Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].

Fluoride

Formula: F- (g)
CAS RN: 16984-48-8
ATcT ID: 16984-48-8*0
SMILES: [F-]
InChI: InChI=1S/FH/h1H/p-1
InChIKey: KRHYYFGTRYWZRS-UHFFFAOYSA-M
InChI: InChI=1S/F/q-1
InChIKey: KMGBPOVUSLQGDS-UHFFFAOYSA-N
Hills Formula: F1-

2D Image:

[F-]
Aliases: F-; Fluoride; Fluoride ion; Fluoride anion; Fluoride ion (1-); Perfluoride; Perfluoride ion; Perfluoride anion; Perfluoride ion (1-); Fluorine atom cation; Fluorine atom ion (1-); Fluorine cation; Fluorine ion (1-); Atomic fluorine cation; Atomic fluorine ion (1-); Monofluorine cation; Monofluorine ion (1-)
Relative Molecular Mass: 18.99895178 ± 0.00000050

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-250.911-249.126± 0.017kJ/mol

3D Image of F- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of F- (g)

The 4 contributors listed below account for 90.3% of the provenance of ΔfH° of F- (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
57.2459.1 F2 (g) → F+ (g) F- (g) ΔrH°(0 K) = 15.62294 ± 0.00043 eVMatthiasson 2021
29.4460.1 F2 (g) → F+ (g) F (g) ΔrH°(0 K) = 19.0242 ± 0.0006 eVMatthiasson 2021
2.3438.1 F2 (g) → 2 F (g) ΔrH°(0 K) = 36.91 ± 0.05 kcal/molFeller 2014
1.3445.1 F (g) → F+ (g) ΔrH°(0 K) = 140524.5 ± 0.4 cm-1Liden 1949, Moore 1970

Top 10 species with enthalpies of formation correlated to the ΔfH° of F- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Fluorine atomF (g)[F]77.25479.360± 0.017kJ/mol18.99840320 ±
0.00000050
14762-94-8*0
99.9 Fluorine atomF (g, 2P3/2)[F]77.25479.039± 0.017kJ/mol18.99840320 ±
0.00000050
14762-94-8*1
99.9 Fluorine atomF (g, 2P1/2)[F]82.08883.873± 0.017kJ/mol18.99840320 ±
0.00000050
14762-94-8*2
96.1 Fluorine atom cationF+ (g)[F+]1758.3021760.600± 0.017kJ/mol18.99785462 ±
0.00000050
14701-13-4*0
89.6 Hydrogen fluorideHF (g)F-272.679-272.726± 0.018kJ/mol20.006343 ±
0.000070
7664-39-3*0
77.0 Fluorine atom dication[F]+2 (g)[F+2]5132.4725134.257± 0.021kJ/mol18.99730604 ±
0.00000050
14701-07-6*0
74.4 Fluoroniumyl ion[HF]+ (g)[FH+]1275.5561275.788± 0.022kJ/mol20.005795 ±
0.000070
12381-92-9*0
52.5 Chlorine fluorideClF (g)ClF-55.622-55.717± 0.030kJ/mol54.45110 ±
0.00090
7790-89-8*0
49.4 Fluorine atom trication[F]+3 (g)[F+3]11182.87211186.697± 0.032kJ/mol18.99675746 ±
0.00000050
14700-88-0*0
14.5 TetrafluoromethaneCF4 (g)C(F)(F)(F)F-927.65-933.62± 0.23kJ/mol88.00431 ±
0.00080
75-73-0*0

Most Influential reactions involving F- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.935612.8 [FHF]- (g) → HF (g) F- (g) ΔrH°(0 K) = 15176 ± 30 cm-1Stein 2013, Sebald 2013a, note unc2
0.928882.1 [ClF]- (g) → Cl (g) F- (g) ΔrH°(0 K) = 29.80 ± 0.2 kcal/molVassilakis 2014, est unc
0.633446.2 F- (g) → F (g) ΔrH°(0 K) = 27432.446 ± 0.019 cm-1Blondel 2001
0.584459.1 F2 (g) → F+ (g) F- (g) ΔrH°(0 K) = 15.62294 ± 0.00043 eVMatthiasson 2021
0.536483.1 HF (g) → H+ (g) F- (g) ΔrH°(0 K) = 129557.1 ± 0.9 cm-1Hu 2006a, Hu 2005a
0.434483.2 HF (g) → H+ (g) F- (g) ΔrH°(0 K) = 129557.7 ± 1 cm-1Martin 2000, Hu 2006a
0.366446.1 F- (g) → F (g) ΔrH°(0 K) = 27432.440 ± 0.025 cm-1Blondel 1989
0.220462.1 F- (g) F2 (g) → [F2]- (g) F (g) ΔrH°(0 K) = 0.38 ± 0.03 eVChupka 1971b
0.099469.6 [F3]- (g) → F2 (g) F- (g) ΔrH°(0 K) = 94.5 ± 8 kJ/molRiedel 2010, est unc
0.087592.5 [(F)(HH)]- (g, singlet) → F- (g) H2 (g) ΔrH°(0 K) = 2.17 ± 1.50 kcal/molRuscic W1RO
0.073583.5 HF (g) → [HFH]+ (g, singlet) F- (g) ΔrH°(0 K) = 255.51 ± 0.8 kcal/molRuscic W1RO, Ruscic W1U
0.070592.2 [(F)(HH)]- (g, singlet) → F- (g) H2 (g) ΔrH°(0 K) = -0.19 ± 1.60 (×1.044) kcal/molRuscic G4
0.066592.1 [(F)(HH)]- (g, singlet) → F- (g) H2 (g) ΔrH°(0 K) = 0.92 ± 1.72 kcal/molRuscic G3X
0.063630.4 [FFH]- (g, triplet) → HF (g) F- (g) ΔrH°(0 K) = -107.85 ± 1.50 kcal/molRuscic W1RO
0.061599.5 [HFH]- (g, triplet) → F- (g) H2 (g) ΔrH°(0 K) = -91.62 ± 1.50 kcal/molRuscic W1RO
0.059627.2 [(HF)(F)]- (g, singlet) → HF (g) F- (g) ΔrH°(0 K) = -11.80 ± 1.60 (×1.139) kcal/molRuscic G4
0.056469.1 [F3]- (g) → F2 (g) F- (g) ΔrH°(0 K) = 1.02 ± 0.11 eVArtau 2000
0.054599.4 [HFH]- (g, triplet) → F- (g) H2 (g) ΔrH°(0 K) = -91.11 ± 1.60 kcal/molRuscic CBS-n
0.048630.1 [FFH]- (g, triplet) → HF (g) F- (g) ΔrH°(0 K) = -109.71 ± 1.72 kcal/molRuscic G3X
0.046599.1 [HFH]- (g, triplet) → F- (g) H2 (g) ΔrH°(0 K) = -91.93 ± 1.72 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov
4   T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023) [DOI: 10.1073/pnas.2304650120]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.