Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].
|
Chlorine atom cation |
Formula: Cl+ (g) |
CAS RN: 24203-47-2 |
ATcT ID: 24203-47-2*0 |
SMILES: [Cl+] |
InChI: InChI=1S/Cl/q+1 |
InChIKey: KVPIFZRDXDYGBA-UHFFFAOYSA-N |
Hills Formula: Cl1+ |
2D Image: |
|
Aliases: Cl+; Chlorine atom cation; Chlorine atom ion (1+); Chlorine cation; Chlorine ion (1+); Atomic chlorine cation; Atomic chlorine ion (1+); Monochlorine cation; Monochlorine ion (1+) |
Relative Molecular Mass: 35.45215 ± 0.00090 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
1370.807 | 1372.603 | ± 0.0021 | kJ/mol |
|
3D Image of Cl+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of Cl+ (g)The 5 contributors listed below account for 96.3% of the provenance of ΔfH° of Cl+ (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of Cl+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 60.3 | Chlorine atom | Cl (g) | | 119.621 | 121.302 | ± 0.0011 | kJ/mol | 35.45270 ± 0.00090 | 22537-15-1*0 | 60.3 | Chlorine atom | Cl (g, 2P3/2) | | 119.621 | 121.228 | ± 0.0011 | kJ/mol | 35.45270 ± 0.00090 | 22537-15-1*1 | 60.3 | Chlorine atom | Cl (g, 2P1/2) | | 130.176 | 131.783 | ± 0.0011 | kJ/mol | 35.45270 ± 0.00090 | 22537-15-1*2 | 25.0 | Chloroniumyl ion | [HCl]+ (g) | | 1137.798 | 1137.732 | ± 0.0051 | kJ/mol | 36.46009 ± 0.00090 | 12258-94-5*0 | 21.9 | Chloride | Cl- (g) | | -228.953 | -227.346 | ± 0.0021 | kJ/mol | 35.45325 ± 0.00090 | 16887-00-6*0 | 13.4 | Chlorine atom dication | [Cl]+2 (g) | | 3668.474 | 3670.081 | ± 0.013 | kJ/mol | 35.45160 ± 0.00090 | 15723-23-6*0 | 12.9 | Hydrogen chloride | HCl (g) | | -91.988 | -92.172 | ± 0.0062 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*0 | 4.8 | Iodine monochloride | ICl (g) | | 19.024 | 17.391 | ± 0.013 | kJ/mol | 162.35717 ± 0.00090 | 7790-99-0*0 | 3.0 | Hydrogen chloride | HCl (aq) | | | -166.989 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*800 | 3.0 | Chloride | Cl- (aq) | | | -166.989 | ± 0.023 | kJ/mol | 35.45325 ± 0.00090 | 16887-00-6*800 |
|
Most Influential reactions involving Cl+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.961 | 753.1 | Cl+ (g) → [Cl]+2 (g)  | ΔrH°(0 K) = 192070.0 ± 1.0 cm-1 | NIST Atomic Web, Radziemski 1974 | 0.807 | 789.1 | [HCl]+ (g) → H (g) + Cl+ (g)  | ΔrH°(0 K) = 37537.0 ± 0.5 cm-1 | Michel 2002, note HCl | 0.574 | 752.1 | Cl (g) → Cl+ (g)  | ΔrH°(0 K) = 104591.01 ± 0.14 cm-1 | Yang 2015, est unc | 0.390 | 776.4 | [Cl3]+ (g, singlet) → Cl+ (g) + Cl2 (g)  | ΔrH°(0 K) = 75.4 ± 0.50 kcal/mol | Thanthiriwatte 2014 | 0.333 | 881.1 | [ClF]+ (g) → Cl+ (g) + F (g)  | ΔrH°(0 K) = 67.42 ± 0.2 kcal/mol | Vassilakis 2014, est unc | 0.281 | 752.5 | Cl (g) → Cl+ (g)  | ΔrH°(0 K) = 104590.9 ± 0.2 cm-1 | Biemont 1999, note unc | 0.125 | 752.2 | Cl (g) → Cl+ (g)  | ΔrH°(0 K) = 104591.0 ± 0.3 cm-1 | Moore 1970, Radziemski 1969 | 0.061 | 748.1 | Cl2 (g) → Cl+ (g) + Cl- (g)  | ΔrH°(0 K) = 95451.6 ± 1.1 cm-1 | Mollet 2010 | 0.043 | 776.3 | [Cl3]+ (g, singlet) → Cl+ (g) + Cl2 (g)  | ΔrH°(0 K) = 75.14 ± 1.50 kcal/mol | Ruscic W1RO | 0.038 | 753.2 | Cl+ (g) → [Cl]+2 (g)  | ΔrH°(0 K) = 192070 ± 5 cm-1 | Moore 1970, Edlen 1964, Kaufman 1969, est unc | 0.038 | 776.1 | [Cl3]+ (g, singlet) → Cl+ (g) + Cl2 (g)  | ΔrH°(0 K) = 74.42 ± 1.60 kcal/mol | Ruscic G4 | 0.020 | 776.2 | [Cl3]+ (g, singlet) → Cl+ (g) + Cl2 (g)  | ΔrH°(0 K) = 74.92 ± 2.16 kcal/mol | Ruscic CBS-n | 0.008 | 2815.1 | ClCN (g) → Cl+ (g) + CN (g)  | ΔrH°(0 K) = 17.324 ± 0.049 eV | Dibeler 1967b, AE corr, est unc | 0.008 | 789.2 | [HCl]+ (g) → H (g) + Cl+ (g)  | ΔrH°(0 K) = 37536.8 ± 5 cm-1 | Michel 2001, note HCl | 0.003 | 748.2 | Cl2 (g) → Cl+ (g) + Cl- (g)  | ΔrH°(0 K) = 95447 ± 5 cm-1 | Li 2007 | 0.000 | 752.4 | Cl (g) → Cl+ (g)  | ΔrH°(0 K) = 104588 ± 10 cm-1 | Huffman 1967 | 0.000 | 879.1 | ClF (g) → Cl+ (g) + F- (g)  | ΔrH°(0 K) = 12.13 ± 0.05 (×1.091) eV | Dibeler 1970a, est unc | 0.000 | 753.4 | Cl+ (g) → [Cl]+2 (g)  | ΔrH°(0 K) = 23.788 ± 0.040 eV | Ruscic W1RO | 0.000 | 790.1 | HCl (g) → H (g) + Cl+ (g)  | ΔrH°(0 K) = 17.37 ± 0.02 (×1.509) eV | Krauss 1968, AE corr, note unc3 | 0.000 | 753.3 | Cl+ (g) → [Cl]+2 (g)  | ΔrH°(0 K) = 23.775 ± 0.073 eV | Ruscic G4 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023)
[DOI: 10.1073/pnas.2304650120]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|