Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Hydrogen fluoride

Formula: HF (aq, 30 H2O)
CAS RN: 7664-39-3
ATcT ID: 7664-39-3*820
SMILES: F
InChI: InChI=1S/FH/h1H
InChIKey: KRHYYFGTRYWZRS-UHFFFAOYSA-N
Hills Formula: F1H1

2D Image:

F
Aliases: HF; Hydrogen fluoride; Hydrogen monofluoride; Hydrofluoric acid; Fluorhydric acid; Fluorohydric acid; Fluorohydrogen; Fluoric acid; Fluorine hydride; Fluorine monohydride
Relative Molecular Mass: 20.006343 ± 0.000070

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-321.90± 0.11kJ/mol

Top contributors to the provenance of ΔfH° of HF (aq, 30 H2O)

The 20 contributors listed below account only for 85.9% of the provenance of ΔfH° of HF (aq, 30 H2O).
A total of 25 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
23.7540.2 H2O (cr,l) F2 (g) → 2 HF (aq, 5 H2O) + 1/2 O2 (g) ΔrH°(298.15 K) = -356.66 ± 0.40 kJ/molPaulechka 2020, Johnson 1987, Vorobev 1960, Hummel 1959, Johnson 1973
9.08012.1 SiO2 (vitr) + 2 F2 (g) → SiF4 (g) O2 (g) ΔrH°(298.15 K) = -170.04 ± 0.25 kcal/molWise 1963, Wise 1963
8.1482.1 1/2 H2 (g) + 1/2 F2 (g) → HF (l) ΔrH°(298.15 K) = -303.56 ± 0.27 (×1.325) kJ/molSettle 1994, Johnson 1973, note HF
6.3539.1 H2O (cr,l) F2 (g) → 2 HF (aq, 3 H2O) + 1/2 O2 (g) ΔrH°(298.15 K) = -355.46 ± 0.80 kJ/molPaulechka 2020, Good 1966, Gunn 1965, Johnson 1966, Domalski 1967a, Gross 1967
5.8542.1 SiF4 (g) + 2 H2O (cr,l) → Si (cr,l) O2 (g) + 4 HF (aq, 5 H2O) ΔrH°(298.15 K) = 899.77 ± 1.20 kJ/molPaulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Johnson 1973
4.88011.1 SiO2 (cr,l) + 2 F2 (g) → SiF4 (g) O2 (g) ΔrH°(298.15 K) = -168.26 ± 0.28 (×1.242) kcal/molWise 1963, Wise 1963
3.8533.3 HF (g) → HF (aq) ΔrH°(298.15 K) = -14.81 ± 0.10 kcal/molVanderzee 1971, Westrum 1949, Davis 1961, Ruterjans 1969
3.4541.1 SiF4 (g) + 2 H2O (cr,l) → SiO2 (cr, quartz) + 4 HF (aq, 5 H2O) ΔrH°(298.15 K) = -11.11 ± 0.37 kJ/molPaulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Kilday 1973, Kilday 1973, Johnson 1973
2.75655.1 CF4 (g) + 2 H2O (cr,l) → CO2 (g) + 4 HF (aq, 20 H2O) ΔrH°(298.15 K) = -41.38 ± 0.32 (×1.756) kcal/molCox 1965, as quoted by Cox 1970, Domalski 1967
2.5498.1 HF (l) → HF (aq, 30 H2O) ΔrH°(298.15 K) = -4.4670 ± 0.0040 kcal/molJohnson 1973, Paulechka 2020
2.1488.1 HF (l) → HF (aq, 5 H2O) ΔrH°(298.15 K) = -4.3298 ± 0.0060 kcal/molJohnson 1973, Paulechka 2020
2.1540.1 H2O (cr,l) F2 (g) → 2 HF (aq, 5 H2O) + 1/2 O2 (g) ΔrH°(298.15 K) = -357.38 ± 1.34 kJ/molPaulechka 2020, Rudzitis 1964, Torgeson 1948, Shomate 1943, CODATA Key Vals, Parker 1965
2.07097.1 CH2F2 (g) O2 (g) → CO2 (g) + 2 HF (aq, 23 H2O) ΔrH°(298.15 K) = -139.80 ± 0.22 (×1.414) kcal/molNeugebauer 1958, Paulechka 2019
1.8532.1 HF (g) [OH]- (aq) → F- (aq) H2O (cr,l) ΔrH°(298.15 K) = -28.065 ± 0.10 (×1.445) kcal/molVanderzee 1971
1.67971.1 Si (cr,l) O2 (g) → SiO2 (cr,l) ΔrH°(298.15 K) = -217.58 ± 0.35 (×1.164) kcal/molGood 1964, Good 1964, Good 1962, King 1951
1.58010.1 Si (cr,l) + 2 F2 (g) → SiF4 (g) ΔrH°(298.15 K) = -385.98 ± 0.19 kcal/molWise 1963, Wise 1963, Wise 1962
1.15989.1 CHF3 (g) O2 (g) + 2 H2O (cr,l) → 2 CO2 (g) + 6 HF (aq, 22 H2O) ΔrH°(298.15 K) = -180.66 ± 1.30 kcal/molNeugebauer 1958, as quoted by Cox 1970
1.0525.1 HF (aq, 5500 H2O) → HF (aq) ΔrH°(298.15 K) = -10.16 ± 0.10 kJ/molPaulechka 2020, Hefter 1984, Kleboth 1970, Baumann 1969, Hepler 1953, Ellis 1963, Broene 1947, Hamer 1970
0.96251.1 CF2CF2 (s) O2 (g) + 2 H2O (cr,l) → 2 CO2 (g) + 4 HF (aq, 10 H2O) ΔrH°(298.15 K) = -160.34 ± 0.9 kcal/molScott 1955, Good 1956
0.9533.2 HF (g) → HF (aq) ΔrH°(298.15 K) = -14.75 ± 0.20 kcal/molHood 1951, Vanderzee 1971, Parker 1965, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of HF (aq, 30 H2O)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.7 Hydrogen fluorideHF (l)F-303.21± 0.11kJ/mol20.006343 ±
0.000070
7664-39-3*590
98.2 Hydrogen fluorideHF (aq, 200 H2O)F-322.08± 0.11kJ/mol20.006343 ±
0.000070
7664-39-3*830
98.2 Hydrogen fluorideHF (aq, 250 H2O)F-322.13± 0.11kJ/mol20.006343 ±
0.000070
7664-39-3*908
98.2 Hydrogen fluorideHF (aq, 264.3 H2O)F-322.14± 0.11kJ/mol20.006343 ±
0.000070
7664-39-3*909
98.2 Hydrogen fluorideHF (aq, 300 H2O)F-322.17± 0.11kJ/mol20.006343 ±
0.000070
7664-39-3*831
98.0 Hydrogen fluorideHF (aq, 400 H2O)F-322.27± 0.11kJ/mol20.006343 ±
0.000070
7664-39-3*832
97.9 Hydrogen fluorideHF (aq, 500 H2O)F-322.36± 0.11kJ/mol20.006343 ±
0.000070
7664-39-3*833
97.9 Hydrogen fluorideHF (aq, 100 H2O)F-322.02± 0.11kJ/mol20.006343 ±
0.000070
7664-39-3*828
97.7 Hydrogen fluorideHF (aq, 600 H2O)F-322.44± 0.11kJ/mol20.006343 ±
0.000070
7664-39-3*834
97.7 Hydrogen fluorideHF (aq, 55.51 H2O)F-321.97± 0.11kJ/mol20.006343 ±
0.000070
7664-39-3*891

Most Influential reactions involving HF (aq, 30 H2O)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.999498.1 HF (l) → HF (aq, 30 H2O) ΔrH°(298.15 K) = -4.4670 ± 0.0040 kcal/molJohnson 1973, Paulechka 2020
0.032913.1 FCl(F)F (g) + 2 H2 (g) → HCl (aq, 100 H2O) + 3 HF (aq, 30 H2O) ΔrH°(298.15 K) = -963.80 ± 5.05 kJ/molKing 1970
0.016928.1 FCl(F)(F)(F)F (g) + 3 H2 (g) → HCl (aq, 100 H2O) + 5 HF (aq, 30 H2O) ΔrH°(298.15 K) = -365.93 ± 1.58 (×1.542) kcal/molArmstrong 1969, Oberholtzer 1971, King 1970
0.0066307.1 CH2CF2 (g) + 2 O2 (g) → 2 CO2 (g) + 2 HF (aq, 30 H2O) ΔrH°(298.15 K) = -259.80 ± 2.40 kcal/molKolesov 1962, as quoted by Pedley 1986


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.