Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].
|
Formic acid cation |
Formula: [HC(O)OH]+ (g, syn) |
CAS RN: 50614-05-6 |
ATcT ID: 50614-05-6*1 |
SMILES: [CH+](=O)O |
InChI: InChI=1S/CH2O2/c2-1-3/h1H,(H,2,3)/q+1 |
InChIKey: XSJNNNMNFREUJX-UHFFFAOYSA-N |
Hills Formula: C1H2O2+ |
2D Image: |
|
Aliases: [HC(O)OH]+; Formic acid cation; Formic acid ion (1+); HC(O)OH+; [HCOOH]+; HCOOH+ |
Relative Molecular Mass: 46.0248 ± 0.0010 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
721.94 | 714.86 | ± 0.25 | kJ/mol |
|
3D Image of [HC(O)OH]+ (g, syn) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of [HC(O)OH]+ (g, syn)The 20 contributors listed below account only for 72.8% of the provenance of ΔfH° of [HC(O)OH]+ (g, syn). A total of 161 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 14.0 | 4441.2 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.329 ± 0.002 eV | Bell 1975 | 11.6 | 4464.2 | HC(O)OH (cr,l) + 1/2 O2 (g) → CO2 (g) + H2O (cr,l)  | ΔrH°(298.15 K) = -60.807 ± 0.074 kcal/mol | Lebedeva 1964 | 9.1 | 4441.1 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 91370 ± 20 cm-1 | Price 1937, est unc | 8.0 | 4464.1 | HC(O)OH (cr,l) + 1/2 O2 (g) → CO2 (g) + H2O (cr,l)  | ΔrH°(298.15 K) = -60.851 ± 0.089 kcal/mol | Sinke 1959 | 7.7 | 4465.1 | HC(O)OH (cr,l) → HC(O)OH (g)  | ΔrH°(298.15 K) = 46.30 ± 0.23 kJ/mol | Majer 1985 | 4.9 | 4441.8 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.3246 ± 0.0020 (×1.682) eV | Leach 2003, Schwell 2001 | 2.7 | 3010.2 | HC(O)OH (g, syn) → [HCO]+ (g) + OH (g)  | ΔrH°(0 K) = 12.81 ± 0.01 eV | Traeger 1985, AE corr | 2.5 | 4463.2 | HC(O)OH (g) → [HCO]+ (g) + OH (g)  | ΔrH°(0 K) = 1235.7 ± 1.0 kJ/mol | Shuman 2010a, Bomble 2006 | 2.5 | 4465.2 | HC(O)OH (cr,l) → HC(O)OH (g)  | ΔrH°(298.15 K) = 46.15 ± 0.40 kJ/mol | NBS Tables 1989 | 1.8 | 4439.3 | HC(O)OH (g, syn) → C (g) + 2 H (g) + 2 O (g)  | ΔrH°(0 K) = 479.81 ± 0.30 kcal/mol | Karton 2011 | 1.6 | 4465.3 | HC(O)OH (cr,l) → HC(O)OH (g)  | ΔrH°(298.15 K) = 46.3 ± 0.5 kJ/mol | Konicek 1970 | 1.0 | 4438.10 | HC(O)OH (g, syn) → C (g) + 2 H (g) + 2 O (g)  | ΔrH°(0 K) = 480.1 ± 0.4 kcal/mol | Feller 2003c | 0.9 | 3040.6 | C(O)(OH)2 (g, cis-cis) + CH2O (g) → 2 HC(O)OH (g, syn)  | ΔrH°(0 K) = -34.26 ± 2.0 kJ/mol | Klippenstein 2017 | 0.7 | 4576.14 | HC(O)OH (g, syn) → [HOCO]+ (g) + H (g)  | ΔrH°(0 K) = 1187.3 ± 1.0 kJ/mol | Shuman 2010a | 0.7 | 4519.11 | CH2(OO) (g) → HC(O)OH (g, syn)  | ΔrH°(0 K) = -90.89 ± 0.25 kcal/mol | Karton 2011 | 0.6 | 4453.1 | CH4 (g) + 2 H2O (g) → HC(O)OH (g, syn) + 3 H2 (g)  | ΔrH°(0 K) = 173.33 ± 2.00 kJ/mol | Klippenstein 2017 | 0.5 | 4439.2 | HC(O)OH (g, syn) → C (g) + 2 H (g) + 2 O (g)  | ΔrH°(0 K) = 479.82 ± 0.56 kcal/mol | Karton 2011 | 0.4 | 4576.2 | HC(O)OH (g, syn) → [HOCO]+ (g) + H (g)  | ΔrH°(0 K) = 12.316 ± 0.013 eV | Ruscic 1989 | 0.4 | 3041.11 | C(O)(OH)2 (g, cis-cis) → CO2 (g) + H2O (g)  | ΔrH°(0 K) = -30.14 ± 2.0 kJ/mol | Klippenstein 2017 | 0.4 | 3035.1 | CH4 (g) + 3 H2O (g) → C(O)(OH)2 (g, cis-cis) + 4 H2 (g)  | ΔrH°(0 K) = 181.13 ± 2.0 kJ/mol | Klippenstein 2017 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of [HC(O)OH]+ (g, syn) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Formic acid cation | [HC(O)OH]+ (g) | | 721.94 | 715.41 | ± 0.25 | kJ/mol | 46.0248 ± 0.0010 | 50614-05-6*0 | 83.7 | Formic acid | HC(O)OH (g, syn) | | -371.03 | -378.35 | ± 0.21 | kJ/mol | 46.0254 ± 0.0010 | 64-18-6*1 | 83.7 | Formic acid | HC(O)OH (g) | | -371.03 | -378.33 | ± 0.21 | kJ/mol | 46.0254 ± 0.0010 | 64-18-6*0 | 55.3 | Formic acid | HC(O)OH (cr,l) | | -431.50 | -424.67 | ± 0.20 | kJ/mol | 46.0254 ± 0.0010 | 64-18-6*500 | 44.5 | Formic acid | HC(O)OH (g, anti) | | -354.70 | -361.81 | ± 0.37 | kJ/mol | 46.0254 ± 0.0010 | 64-18-6*2 | 24.2 | Formic acid | HC(O)OH (aq, undissoc) | | | -425.38 | ± 0.45 | kJ/mol | 46.0254 ± 0.0010 | 64-18-6*1000 | 24.2 | Formic acid | HC(O)OH (aq) | | | -425.48 | ± 0.45 | kJ/mol | 46.0254 ± 0.0010 | 64-18-6*800 | 24.2 | Formate | [HC(O)O]- (aq) | | | -425.48 | ± 0.45 | kJ/mol | 45.0180 ± 0.0010 | 71-47-6*800 | 24.0 | Carbonic acid | C(O)(OH)2 (g, cis-cis) | | -602.32 | -612.49 | ± 0.58 | kJ/mol | 62.0248 ± 0.0012 | 463-79-6*1 | 24.0 | Carbonic acid | C(O)(OH)2 (g) | | -602.32 | -611.63 | ± 0.58 | kJ/mol | 62.0248 ± 0.0012 | 463-79-6*0 |
|
Most Influential reactions involving [HC(O)OH]+ (g, syn)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 4455.1 | [HC(O)OH]+ (g) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 0 ± 0 cm-1 | triv, Ruscic G3B3 | 0.478 | 4441.2 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.329 ± 0.002 eV | Bell 1975 | 0.311 | 4441.1 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 91370 ± 20 cm-1 | Price 1937, est unc | 0.169 | 4441.8 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.3246 ± 0.0020 (×1.682) eV | Leach 2003, Schwell 2001 | 0.123 | 4459.7 | [HC(O)OH]+ (g, syn) → [HC(O)OH]+ (g, anti)  | ΔrH°(0 K) = 173 ± 280 cm-1 | Ruscic CBS-n | 0.107 | 4459.8 | [HC(O)OH]+ (g, syn) → [HC(O)OH]+ (g, anti)  | ΔrH°(0 K) = 149 ± 300 cm-1 | Ruscic W1RO | 0.100 | 4459.4 | [HC(O)OH]+ (g, syn) → [HC(O)OH]+ (g, anti)  | ΔrH°(0 K) = 138 ± 310 cm-1 | Ruscic G4 | 0.097 | 4459.3 | [HC(O)OH]+ (g, syn) → [HC(O)OH]+ (g, anti)  | ΔrH°(0 K) = 137 ± 315 cm-1 | Ruscic G3X | 0.078 | 4459.6 | [HC(O)OH]+ (g, syn) → [HC(O)OH]+ (g, anti)  | ΔrH°(0 K) = 167 ± 350 cm-1 | Ruscic CBS-n | 0.013 | 4444.2 | HC(O)OH (g, anti) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.16 ± 0.03 eV | Matthews 1969 | 0.013 | 4444.1 | HC(O)OH (g, anti) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.16 ± 0.03 eV | Warneck 1974 | 0.009 | 4441.4 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.314 ± 0.002 (×7.025) eV | Knowles 1974 | 0.007 | 4444.10 | HC(O)OH (g, anti) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.170 ± 0.040 eV | Ruscic W1RO | 0.004 | 4441.7 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.33 ± 0.02 eV | Brundle 1969a, est unc | 0.004 | 4441.3 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.31 ± 0.02 eV | Traeger 1985, est unc | 0.004 | 4441.5 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.33 ± 0.02 eV | Watanabe 1973a, Watanabe 1973, est unc | 0.002 | 4444.6 | HC(O)OH (g, anti) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.126 ± 0.073 eV | Ruscic G4 | 0.002 | 4444.9 | HC(O)OH (g, anti) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.168 ± 0.075 eV | Ruscic CBS-n | 0.002 | 4441.6 | HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn)  | ΔrH°(0 K) = 11.35 ± 0.03 eV | Thomas 1972 | 0.001 | 4449.1 | [HC(O)OH]+ (g, syn) → C (g) + H (g) + H+ (g) + 2 O (g)  | ΔrH°(0 K) = 531.93 ± 1.5 kcal/mol | Nguyen 2007, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997229]
|
4
|
|
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022)
[DOI: 10.1021/jacs.2c07740]
|
5
|
|
B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
8
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|