Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Dichlorodifluoromethane

Formula: CF2Cl2 (g)
CAS RN: 75-71-8
ATcT ID: 75-71-8*0
SMILES: FC(F)(Cl)Cl
SMILES: C(F)(F)(Cl)Cl
InChI: InChI=1S/CCl2F2/c2-1(3,4)5
InChIKey: PXBRQCKWGAHEHS-UHFFFAOYSA-N
Hills Formula: C1Cl2F2

2D Image:

FC(F)(Cl)Cl
Aliases: CF2Cl2; Dichlorodifluoromethane; Dichloro(difluoro)methane; Difluorodichloromethane; Methane difluoride dichloride; Methane dichloride difluoride; Difluorodichlorocarbon; Dichlorodifluorocarbon; Carbon difluoride dichloride; Carbon dichloride difluoride; Halon 122; R 12; CFC 12; FC 12; F 12; UN 1028; RCRA U075; Algofrene 2; Arcton 12; Arcton 6; Electro-CF 12; Eskimon 12; Fluorocarbon 12; Freon 12; Freon F-12; Frigen 12; Genetron 12; Halon; Isceon 122; Isotron 12; Kaiser chemicals 12; Ledon 12; Methane, dichlorodifluoro-; Propellant 12; Refrigerant 12; Ucon 12; Ucon 12/halocarbon 12
Relative Molecular Mass: 120.9129 ± 0.0020

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-488.99-493.18± 0.44kJ/mol

3D Image of CF2Cl2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CF2Cl2 (g)

The 20 contributors listed below account only for 68.3% of the provenance of ΔfH° of CF2Cl2 (g).
A total of 93 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
40.76139.7 CF4 (g) CCl4 (g) → 2 CF2Cl2 (g) ΔrH°(0 K) = 9.20 ± 0.25 kcal/molKarton 2017
8.86073.7 CF2Cl2 (g) → C (g) + 2 Cl (g) + 2 F (g) ΔrH°(0 K) = 380.82 ± 0.35 kcal/molKarton 2017
3.16139.6 CF4 (g) CCl4 (g) → 2 CF2Cl2 (g) ΔrH°(0 K) = 9.48 ± 0.9 kcal/molRuscic W1RO
2.16139.3 CF4 (g) CCl4 (g) → 2 CF2Cl2 (g) ΔrH°(0 K) = 10.25 ± 1.1 kcal/molRuscic G3X
1.36410.8 CO2 (g) CCl4 (g) → 2 CCl2O (g) ΔrH°(0 K) = 11.18 ± 0.25 kcal/molKarton 2017, Karton 2011, Karton 2007, Karton 2006
1.16139.4 CF4 (g) CCl4 (g) → 2 CF2Cl2 (g) ΔrH°(0 K) = 10.85 ± 1.0 (×1.509) kcal/molRuscic G4
1.06074.1 CF2Cl2 (g) → C (g) F2 (g) Cl2 (g) ΔrH°(0 K) = 1199.51 ± 4.2 kJ/molCsontos 2010
0.96141.6 CF3Cl (g) CCl4 (g) → CF2Cl2 (g) CCl3F (g) ΔrH°(0 K) = 5.21 ± 0.9 kcal/molRuscic W1RO
0.96076.5 CF2Cl2 (g) + 2 H (g) → CH2F2 (g) + 2 Cl (g) ΔrH°(0 K) = -145.63 ± 4.2 kJ/molCsontos 2010
0.85935.6 CH3Cl (g) + 3 Cl (g) → CCl4 (g) + 3 H (g) ΔrH°(0 K) = 65.97 ± 0.30 (×1.139) kcal/molKarton 2017
0.86078.5 CF2Cl2 (g) + 2 F (g) → CF4 (g) + 2 Cl (g) ΔrH°(0 K) = -353.44 ± 4.2 kJ/molCsontos 2010
0.76141.4 CF3Cl (g) CCl4 (g) → CF2Cl2 (g) CCl3F (g) ΔrH°(0 K) = 6.01 ± 1.0 kcal/molRuscic G4
0.75658.9 CCl4 (g) → C (g) + 4 Cl (g) ΔrH°(0 K) = 305.34 ± 0.35 (×1.189) kcal/molKarton 2017
0.76075.5 CF2Cl2 (g) + 2 H (g) → CH2Cl2 (g) + 2 F (g) ΔrH°(0 K) = 123.93 ± 4.2 kJ/molCsontos 2010
0.65652.2 C (graphite) + 2 F2 (g) → CF4 (g) ΔrH°(298.15 K) = -223.024 ± 0.157 kcal/molGreenberg 1968
0.65662.6 CCl4 (g) + 4 F (g) → CF4 (g) + 4 Cl (g) ΔrH°(0 K) = -160.16 ± 0.30 kcal/molKarton 2017
0.66076.4 CF2Cl2 (g) + 2 H (g) → CH2F2 (g) + 2 Cl (g) ΔrH°(0 K) = -35.60 ± 1.2 kcal/molRuscic W1RO
0.66141.3 CF3Cl (g) CCl4 (g) → CF2Cl2 (g) CCl3F (g) ΔrH°(0 K) = 5.44 ± 1.1 kcal/molRuscic G3X
0.66138.6 CF4 (g) CCl3F (g) → CF2Cl2 (g) CF3Cl (g) ΔrH°(0 K) = 4.27 ± 0.9 kcal/molRuscic W1RO
0.65660.6 CCl4 (g) + 4 H (g) → CH4 (g) + 4 Cl (g) ΔrH°(0 K) = -87.18 ± 0.30 (×1.576) kcal/molKarton 2017, Karton 2011, Karton 2006

Top 10 species with enthalpies of formation correlated to the ΔfH° of CF2Cl2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
38.6 TetrachloromethaneCCl4 (g)ClC(Cl)(Cl)Cl-89.39-91.56± 0.41kJ/mol153.8215 ±
0.0037
56-23-5*0
38.4 TetrachloromethaneCCl4 (l)ClC(Cl)(Cl)Cl-104.66-124.07± 0.41kJ/mol153.8215 ±
0.0037
56-23-5*500
26.8 FluorotrichloromethaneCCl3F (g)FC(Cl)(Cl)Cl-283.33-286.48± 0.76kJ/mol137.3672 ±
0.0028
75-69-4*0
26.0 ChloroformCHCl3 (g)C(Cl)(Cl)Cl-94.67-99.57± 0.39kJ/mol119.3767 ±
0.0028
67-66-3*0
24.0 ChloroformCHCl3 (l)C(Cl)(Cl)Cl-130.97± 0.42kJ/mol119.3767 ±
0.0028
67-66-3*590
23.9 TetrafluoromethaneCF4 (g)C(F)(F)(F)F-927.79-933.76± 0.23kJ/mol88.00431 ±
0.00080
75-73-0*0
21.0 BromotrichloromethaneCCl3Br (g)ClC(Cl)(Cl)Br-29.75-38.90± 0.54kJ/mol198.2728 ±
0.0030
75-62-7*0
20.8 DichloromethaneCH2Cl2 (g)C(Cl)Cl-86.94-93.79± 0.33kJ/mol84.9320 ±
0.0020
75-09-2*0
20.4 ChlorotrifluoromethaneCF3Cl (g)FC(F)(F)Cl-704.38-709.48± 0.56kJ/mol104.4586 ±
0.0012
75-72-9*0
19.8 PolytetrafluoroethyleneCF2CF2 (s)FC(C(F)(F)[*:1])(F)[*:2]-830.25± 0.55kJ/mol100.0150 ±
0.0016
9002-84-0*591

Most Influential reactions involving CF2Cl2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5756139.7 CF4 (g) CCl4 (g) → 2 CF2Cl2 (g) ΔrH°(0 K) = 9.20 ± 0.25 kcal/molKarton 2017
0.1436142.6 CF2Cl2 (g) CCl4 (g) → 2 CCl3F (g) ΔrH°(0 K) = 2.81 ± 0.9 kcal/molRuscic W1RO
0.1166142.4 CF2Cl2 (g) CCl4 (g) → 2 CCl3F (g) ΔrH°(0 K) = 3.29 ± 1.0 kcal/molRuscic G4
0.0966142.3 CF2Cl2 (g) CCl4 (g) → 2 CCl3F (g) ΔrH°(0 K) = 2.92 ± 1.1 kcal/molRuscic G3X
0.0896073.7 CF2Cl2 (g) → C (g) + 2 Cl (g) + 2 F (g) ΔrH°(0 K) = 380.82 ± 0.35 kcal/molKarton 2017
0.0866137.6 CF4 (g) CF2Cl2 (g) → 2 CF3Cl (g) ΔrH°(0 K) = 1.87 ± 0.9 kcal/molRuscic W1RO
0.0706137.4 CF4 (g) CF2Cl2 (g) → 2 CF3Cl (g) ΔrH°(0 K) = 2.11 ± 1.0 kcal/molRuscic G4
0.0646141.6 CF3Cl (g) CCl4 (g) → CF2Cl2 (g) CCl3F (g) ΔrH°(0 K) = 5.21 ± 0.9 kcal/molRuscic W1RO
0.0606098.3 CHClF2 (g) Cl (g) → CF2Cl2 (g) H (g) ΔrH°(0 K) = 83.29 ± 4.2 kJ/molCsontos 2010
0.0596138.6 CF4 (g) CCl3F (g) → CF2Cl2 (g) CF3Cl (g) ΔrH°(0 K) = 4.27 ± 0.9 kcal/molRuscic W1RO
0.0586137.3 CF4 (g) CF2Cl2 (g) → 2 CF3Cl (g) ΔrH°(0 K) = 2.29 ± 1.1 kcal/molRuscic G3X
0.0526141.4 CF3Cl (g) CCl4 (g) → CF2Cl2 (g) CCl3F (g) ΔrH°(0 K) = 6.01 ± 1.0 kcal/molRuscic G4
0.0506106.4 CHFCl2 (g) F (g) → CF2Cl2 (g) H (g) ΔrH°(0 K) = -71.86 ± 4.2 kJ/molCsontos 2010
0.0486138.4 CF4 (g) CCl3F (g) → CF2Cl2 (g) CF3Cl (g) ΔrH°(0 K) = 4.84 ± 1.0 kcal/molRuscic G4
0.0446139.6 CF4 (g) CCl4 (g) → 2 CF2Cl2 (g) ΔrH°(0 K) = 9.48 ± 0.9 kcal/molRuscic W1RO
0.0436141.3 CF3Cl (g) CCl4 (g) → CF2Cl2 (g) CCl3F (g) ΔrH°(0 K) = 5.44 ± 1.1 kcal/molRuscic G3X
0.0416137.5 CF4 (g) CF2Cl2 (g) → 2 CF3Cl (g) ΔrH°(0 K) = 2.17 ± 1.3 kcal/molRuscic CBS-n
0.0406138.3 CF4 (g) CCl3F (g) → CF2Cl2 (g) CF3Cl (g) ΔrH°(0 K) = 4.81 ± 1.1 kcal/molRuscic G3X
0.0356098.2 CHClF2 (g) Cl (g) → CF2Cl2 (g) H (g) ΔrH°(0 K) = 19.66 ± 1.3 kcal/molRuscic G4
0.0356106.3 CHFCl2 (g) F (g) → CF2Cl2 (g) H (g) ΔrH°(0 K) = -17.37 ± 1.2 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.