Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Methylidyne

Formula: CH (g, doublet)
CAS RN: 3315-37-5
ATcT ID: 3315-37-5*1
SMILES: [CH]
InChI: InChI=1S/CH/h1H
InChIKey: VRLIPUYDFBXWCH-UHFFFAOYSA-N
Hills Formula: C1H1

2D Image:

[CH]
Aliases: CH; Methylidyne; Methylidyne radical; Methyne radical; Methyne; Carbyne; Hydridocarbon; Carbon hydride; Carbon monohydride
Relative Molecular Mass: 13.01864 ± 0.00080

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
592.832596.166± 0.095kJ/mol

3D Image of CH (g, doublet)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH (g, doublet)

The 20 contributors listed below account only for 54.7% of the provenance of ΔfH° of CH (g, doublet).
A total of 227 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
22.02343.12 CH (g) → C (g) H (g) ΔrH°(0 K) = 80.01 ± 0.04 kcal/molFeller 2014
5.32343.2 CH (g) → C (g) H (g) ΔrH°(0 K) = 334.74 ± 0.34 kJ/molCsaszar 2002
3.52343.11 CH (g) → C (g) H (g) ΔrH°(0 K) = 79.99 ± 0.1 kcal/molFeller 2008
2.92357.8 CH2 (g, triplet) → CH (g) H (g) ΔrH°(0 K) = 417.85 ± 0.35 kJ/molCsaszar 2003
1.92342.4 CH (g) → C (g) H (g) ΔrH°(0 K) = 334.41 ± 0.56 kJ/molHarding 2008
1.72357.12 CH2 (g, triplet) → CH (g) H (g) ΔrH°(0 K) = 99.75 ± 0.08 (×1.384) kcal/molFeller 2014
1.52341.12 CH (g) → C (g) H (g) ΔrH°(0 K) = 80.00 ± 0.15 kcal/molKarton 2007a
1.52346.13 [CH]- (g) → CH (g) ΔrH°(0 K) = 1.215 ± 0.005 eVFeller 2016, note unc3
1.42358.5 CH2 (g, singlet) → CH (g) H (g) ΔrH°(0 K) = 90.97 ± 0.12 kcal/molFeller 2014
1.46198.11 CF (g) → C (g) F (g) ΔrH°(0 K) = 545.41 ± 0.56 kJ/molHarding 2008
1.32279.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.32172.11 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.92 ± 0.10 (×1.215) kJ/molThorpe 2021
1.22342.2 CH (g) → C (g) H (g) ΔrH°(0 K) = 334.39 ± 0.70 kJ/molHarding 2008
1.12357.4 CH2 (g, triplet) → CH (g) H (g) ΔrH°(0 K) = 418.04 ± 0.56 kJ/molHarding 2008
1.12342.3 CH (g) → C (g) H (g) ΔrH°(0 K) = 334.40 ± 0.74 kJ/molHarding 2008
1.02342.1 CH (g) → C (g) H (g) ΔrH°(0 K) = 334.70 ± 0.75 kJ/molTajti 2004, est unc
1.02345.2 CH (g) → [CH]+ (g) ΔrH°(0 K) = 10.640 ± 0.008 eVGans 2016, as quoted by CODATA Key Vals
0.92356.4 CH2 (g, triplet) → CH (g) H (g) ΔrH°(0 K) = 99.87 ± 0.15 kcal/molKarton 2008
0.96198.9 CF (g) → C (g) F (g) ΔrH°(0 K) = 545.72 ± 0.70 kJ/molHarding 2008
0.92182.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH (g, doublet)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 MethylidyneCH (g)[CH]592.832596.166± 0.095kJ/mol13.01864 ±
0.00080
3315-37-5*0
72.3 FluoromethylidyneCF (g)[C]F243.11246.71± 0.12kJ/mol31.00910 ±
0.00080
3889-75-6*0
40.8 CarbonC (g)[C]711.396716.881± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*0
40.8 CarbonC (g, triplet)[C]711.396716.881± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*1
40.8 Carbon cationC+ (g)[C+]1797.8491803.447± 0.041kJ/mol12.01015 ±
0.00080
14067-05-1*0
40.8 CarbonC (g, quintuplet)[C]1114.9591120.105± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*3
40.8 CarbonC (g, singlet)[C]833.327838.474± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*2
40.7 Carbon dication[C]+2 (g)[C++]4150.4664155.612± 0.041kJ/mol12.00960 ±
0.00080
16092-61-8*0
40.6 Carbon anionC- (g)[C-]589.620594.766± 0.041kJ/mol12.01125 ±
0.00080
14337-00-9*0
40.2 Methyliumylidene[CH]+ (g)[CH+]1619.7531623.096± 0.042kJ/mol13.01809 ±
0.00080
24361-82-8*0

Most Influential reactions involving CH (g, doublet)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0002350.1 CH (g) → CH (g, doublet) ΔrH°(0 K) = 0 ± 0 cm-1Botterud 1973, Huber 1979
0.4342352.1 CH (g, doublet) → CH (g, quartet) ΔrH°(0 K) = 0.742 ± 0.008 eVKasdan 1975
0.1135404.9 HCNN (g, doublet) → CH (g, doublet) N2 (g) ΔrH°(0 K) = 126.88 ± 2.0 kJ/molKlippenstein 2017
0.0452484.5 CH3C (g, doublet) CH3 (g) → CH (g, doublet) CH3CH2 (g) ΔrH°(0 K) = 15.92 ± 0.9 kcal/molRuscic W1RO
0.0442483.8 CH3C (g, doublet) CH4 (g) → CH (g, doublet) CH3CH3 (g) ΔrH°(0 K) = 19.72 ± 0.9 kcal/molRuscic W1RO
0.0372484.2 CH3C (g, doublet) CH3 (g) → CH (g, doublet) CH3CH2 (g) ΔrH°(0 K) = 15.91 ± 1.0 kcal/molRuscic G4
0.0372484.4 CH3C (g, doublet) CH3 (g) → CH (g, doublet) CH3CH2 (g) ΔrH°(0 K) = 15.18 ± 1.0 kcal/molRuscic CBS-n
0.0362483.7 CH3C (g, doublet) CH4 (g) → CH (g, doublet) CH3CH3 (g) ΔrH°(0 K) = 18.88 ± 1.0 kcal/molRuscic CBS-n
0.0362483.4 CH3C (g, doublet) CH4 (g) → CH (g, doublet) CH3CH3 (g) ΔrH°(0 K) = 19.88 ± 1.0 kcal/molRuscic G4
0.0302352.2 CH (g, doublet) → CH (g, quartet) ΔrH°(0 K) = 0.74 ± 0.03 eVGoebbert 2012
0.0302352.3 CH (g, doublet) → CH (g, quartet) ΔrH°(0 K) = 0.760 ± 0.030 eVKalemos 1999, est unc
0.0302484.1 CH3C (g, doublet) CH3 (g) → CH (g, doublet) CH3CH2 (g) ΔrH°(0 K) = 15.68 ± 1.1 kcal/molRuscic G3X
0.0292483.3 CH3C (g, doublet) CH4 (g) → CH (g, doublet) CH3CH3 (g) ΔrH°(0 K) = 19.19 ± 1.1 kcal/molRuscic G3X
0.0212484.3 CH3C (g, doublet) CH3 (g) → CH (g, doublet) CH3CH2 (g) ΔrH°(0 K) = 15.31 ± 1.3 kcal/molRuscic CBS-n
0.0212483.6 CH3C (g, doublet) CH4 (g) → CH (g, doublet) CH3CH3 (g) ΔrH°(0 K) = 19.19 ± 1.3 kcal/molRuscic CBS-n
0.0142352.5 CH (g, doublet) → CH (g, quartet) ΔrH°(0 K) = 5897 ± 350 cm-1Hettema 1994, est unc
0.0115404.6 HCNN (g, doublet) → CH (g, doublet) N2 (g) ΔrH°(0 K) = 29.47 ± 1.50 kcal/molRuscic W1RO
0.0115404.8 HCNN (g, doublet) → CH (g, doublet) N2 (g) ΔrH°(0 K) = 29.6 ± 1.5 kcal/molBerman 2007, est unc
0.0105404.7 HCNN (g, doublet) → CH (g, doublet) N2 (g) ΔrH°(0 K) = 28.34 ± 1.2 (×1.297) kcal/molHarding 2008a, est unc
0.0102351.8 CH (g, doublet) → CH (g, quartet) ΔrH°(0 K) = 6029 ± 420 cm-1Ruscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.