Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Silanone

Formula: SiH2O (g)
CAS RN: 22755-01-7
ATcT ID: 22755-01-7*0
SMILES: [SiH2]=O
InChI: InChI=1S/H2OSi/c1-2/h2H2
InChIKey: HZBAVWLZSLOCFR-UHFFFAOYSA-N
Hills Formula: H2O1Si1

2D Image:

[SiH2]=O
Aliases: SiH2O; Silanone; Oxosilane; Silaformaldehyde
Relative Molecular Mass: 46.10078 ± 0.00045

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-93.7-99.1± 1.0kJ/mol

3D Image of SiH2O (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of SiH2O (g)

The 20 contributors listed below account only for 57.3% of the provenance of ΔfH° of SiH2O (g).
A total of 78 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
8.58144.4 SiH3OH (g) SiO (g) → 2 SiH2O (g) ΔrH°(0 K) = 43.15 ± 0.9 kcal/molRuscic W1RO
6.98144.2 SiH3OH (g) SiO (g) → 2 SiH2O (g) ΔrH°(0 K) = 43.49 ± 1.0 kcal/molRuscic G4
5.78144.1 SiH3OH (g) SiO (g) → 2 SiH2O (g) ΔrH°(0 K) = 43.14 ± 1.1 kcal/molRuscic G3X
4.08144.3 SiH3OH (g) SiO (g) → 2 SiH2O (g) ΔrH°(0 K) = 42.54 ± 1.3 kcal/molRuscic CBS-n
3.48010.1 Si (cr,l) + 2 F2 (g) → SiF4 (g) ΔrH°(298.15 K) = -385.98 ± 0.19 kcal/molWise 1963, Wise 1963, Wise 1962
3.17988.6 SiO2 (cr,l) Si (cr,l) → 2 SiO (g) ΔrG°(1618 K) = 37.94 ± 0.29 kcal/molRamstad 1961, 3rd Law, Gurvich TPIS
2.68140.4 SiH2O (g) → SiH4 (g) SiO2 (g) ΔrH°(0 K) = -11.38 ± 0.9 kcal/molRuscic W1RO
2.58052.1 SiH3SiH3 (g) → 2 Si (cr,l) + 3 H2 (g) ΔrH°(298.15 K) = -19.1 ± 0.6 (×1.576) kcal/molGunn 1961, est unc
2.48016.1 SiH4 (g) → Si (cr,l) + 2 H2 (g) ΔrH°(298.15 K) = -8.3 ± 0.5 kcal/molGunn 1961, Gurvich TPIS, est unc
2.27953.2 Si (cr,l) → Si (g) ΔrG°(1525 K) = 231.1 ± 2.0 kJ/molBatdorf 1959, 3rd Law
2.18140.2 SiH2O (g) → SiH4 (g) SiO2 (g) ΔrH°(0 K) = -11.06 ± 1.0 kcal/molRuscic G4
1.78139.4 SiH2O (g) CH4 (g) → CH2O (g) SiH4 (g) ΔrH°(0 K) = 23.02 ± 1.2 kcal/molRuscic W1RO
1.78140.1 SiH2O (g) → SiH4 (g) SiO2 (g) ΔrH°(0 K) = -11.78 ± 1.1 kcal/molRuscic G3X
1.6542.1 SiF4 (g) + 2 H2O (cr,l) → Si (cr,l) O2 (g) + 4 HF (aq, 5 H2O) ΔrH°(298.15 K) = 899.77 ± 1.20 kJ/molPaulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Johnson 1973
1.58139.2 SiH2O (g) CH4 (g) → CH2O (g) SiH4 (g) ΔrH°(0 K) = 22.31 ± 1.3 kcal/molRuscic G4
1.47966.4 SiO2 (g) → Si (g) + 2 O (g) ΔrH°(0 K) = 291.89 ± 1.50 kcal/molRuscic W1RO
1.38007.8 SiF4 (g) → Si (g) + 4 F (g) ΔrH°(0 K) = 565.92 ± 0.30 kcal/molKarton 2011
1.37966.2 SiO2 (g) → Si (g) + 2 O (g) ΔrH°(0 K) = 290.52 ± 1.60 kcal/molRuscic G4
1.38139.1 SiH2O (g) CH4 (g) → CH2O (g) SiH4 (g) ΔrH°(0 K) = 22.99 ± 1.4 kcal/molRuscic G3X
1.28138.4 SiH2O (g) → Si (g) O (g) + 2 H (g) ΔrH°(0 K) = 292.52 ± 1.50 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of SiH2O (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
58.1 SilanolSiH3OH (g)[SiH3]O-271.0-282.7± 1.3kJ/mol48.11666 ±
0.00051
14475-38-8*0
54.3 DioxosilaneSiO2 (g)O=[Si]=O-277.9-279.2± 2.0kJ/mol60.08430 ±
0.00067
7631-86-9*0
51.0 Silicon atom dication[Si]+2 (g)[Si++]2814.032817.02± 0.59kJ/mol28.08440 ±
0.00030
14175-55-4*0
51.0 Silicon cationSi+ (g)[Si+]1236.901241.03± 0.59kJ/mol28.08495 ±
0.00030
14067-07-3*0
51.0 Silicon anionSi- (g)[Si-]316.31319.30± 0.59kJ/mol28.08605 ±
0.00030
14337-02-1*0
51.0 SiliconSi (g)[Si]450.38454.72± 0.59kJ/mol28.08550 ±
0.00030
7440-21-3*0
51.0 Silicon atom trication[Si]+3 (g)[Si+3]6045.626048.60± 0.59kJ/mol28.08385 ±
0.00030
14175-56-5*0
51.0 Silicon atom tetracation[Si]+4 (g)[Si+4]10401.1410404.12± 0.59kJ/mol28.08331 ±
0.00030
22537-24-2*0
50.5 SilyloxySiH3O (g)[SiH3][O]8.60.6± 1.5kJ/mol47.10872 ±
0.00047
81429-20-1*0
50.2 SilaneSiH4 (g)[SiH4]42.6833.06± 0.65kJ/mol32.11726 ±
0.00041
7803-62-5*0

Most Influential reactions involving SiH2O (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2578142.4 CH3Si(O)CH3 (g) + 2 SiH4 (g) → 2 CH3SiH3 (g) SiH2O (g) ΔrH°(0 K) = 9.20 ± 0.9 kcal/molRuscic W1RO
0.2288140.4 SiH2O (g) → SiH4 (g) SiO2 (g) ΔrH°(0 K) = -11.38 ± 0.9 kcal/molRuscic W1RO
0.2088142.2 CH3Si(O)CH3 (g) + 2 SiH4 (g) → 2 CH3SiH3 (g) SiH2O (g) ΔrH°(0 K) = 9.26 ± 1.0 kcal/molRuscic G4
0.1858140.2 SiH2O (g) → SiH4 (g) SiO2 (g) ΔrH°(0 K) = -11.06 ± 1.0 kcal/molRuscic G4
0.1758144.4 SiH3OH (g) SiO (g) → 2 SiH2O (g) ΔrH°(0 K) = 43.15 ± 0.9 kcal/molRuscic W1RO
0.1728142.1 CH3Si(O)CH3 (g) + 2 SiH4 (g) → 2 CH3SiH3 (g) SiH2O (g) ΔrH°(0 K) = 9.71 ± 1.1 kcal/molRuscic G3X
0.1538140.1 SiH2O (g) → SiH4 (g) SiO2 (g) ΔrH°(0 K) = -11.78 ± 1.1 kcal/molRuscic G3X
0.1418144.2 SiH3OH (g) SiO (g) → 2 SiH2O (g) ΔrH°(0 K) = 43.49 ± 1.0 kcal/molRuscic G4
0.1268216.4 SiH2OH (g) CH2O (g) → SiH2O (g) CH2OH (g) ΔrH°(0 K) = 25.21 ± 0.9 kcal/molRuscic W1RO
0.1238142.3 CH3Si(O)CH3 (g) + 2 SiH4 (g) → 2 CH3SiH3 (g) SiH2O (g) ΔrH°(0 K) = 9.15 ± 1.3 kcal/molRuscic CBS-n
0.1178144.1 SiH3OH (g) SiO (g) → 2 SiH2O (g) ΔrH°(0 K) = 43.14 ± 1.1 kcal/molRuscic G3X
0.1098140.3 SiH2O (g) → SiH4 (g) SiO2 (g) ΔrH°(0 K) = -11.54 ± 1.3 kcal/molRuscic CBS-n
0.1098199.4 SiH3O (g) CH2O (g) → SiH2O (g) CH3O (g) ΔrH°(0 K) = 7.34 ± 0.9 kcal/molRuscic W1RO
0.1028216.2 SiH2OH (g) CH2O (g) → SiH2O (g) CH2OH (g) ΔrH°(0 K) = 25.79 ± 1.0 kcal/molRuscic G4
0.0888199.2 SiH3O (g) CH2O (g) → SiH2O (g) CH3O (g) ΔrH°(0 K) = 8.07 ± 1.0 kcal/molRuscic G4
0.0848216.1 SiH2OH (g) CH2O (g) → SiH2O (g) CH2OH (g) ΔrH°(0 K) = 25.41 ± 1.1 kcal/molRuscic G3X
0.0838144.3 SiH3OH (g) SiO (g) → 2 SiH2O (g) ΔrH°(0 K) = 42.54 ± 1.3 kcal/molRuscic CBS-n
0.0738199.1 SiH3O (g) CH2O (g) → SiH2O (g) CH3O (g) ΔrH°(0 K) = 7.72 ± 1.1 kcal/molRuscic G3X
0.0608216.3 SiH2OH (g) CH2O (g) → SiH2O (g) CH2OH (g) ΔrH°(0 K) = 25.70 ± 1.3 kcal/molRuscic CBS-n
0.0528199.3 SiH3O (g) CH2O (g) → SiH2O (g) CH3O (g) ΔrH°(0 K) = 7.35 ± 1.3 kcal/molRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.