Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].
|
Bromobenzene |
Formula: C6H5Br (g) |
CAS RN: 108-86-1 |
ATcT ID: 108-86-1*0 |
SMILES: c1ccc(cc1)Br |
SMILES: c1ccccc1Br |
InChI: InChI=1S/C6H5Br/c7-6-4-2-1-3-5-6/h1-5H |
InChIKey: QARVLSVVCXYDNA-UHFFFAOYSA-N |
Hills Formula: C6H5Br1 |
2D Image: |
|
Aliases: Bromobenzene; Monobromobenzene; Phenyl bromide; C6H5Br; NSC 6529 |
Relative Molecular Mass: 157.0079 ± 0.0049 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
127.0 | 104.9 | ± 1.3 | kJ/mol |
|
3D Image of C6H5Br (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of C6H5Br (g)The 20 contributors listed below account only for 83.1% of the provenance of ΔfH° of C6H5Br (g). A total of 36 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 15.0 | 6890.1 | C6H5Br (cr,l) + HCl (g) → C6H6 (cr,l) + 1/2 Br2 (cr,l) + 1/2 Cl2 (g)  | ΔrH°(298.15 K) = 19.98 ± 0.78 kcal/mol | Chernick 1956, Hartley 1951 | 14.6 | 6903.1 | C6H5I (cr,l) + 1/2 Br2 (cr,l) → C6H5Br (cr,l) + 1/2 I2 (cr,l)  | ΔrH°(298.15 K) = -12.85 ± 0.55 kcal/mol | Chernick 1956, Hartley 1951 | 10.0 | 6884.2 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.827 ± 0.030 eV | Stevens 2009 | 7.2 | 6884.1 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.781 ± 0.029 (×1.215) eV | Stevens 2009 | 6.6 | 6883.1 | C6H5Cl (g) + Br (g) → C6H5Br (g) + Cl (g)  | ΔrH°(0 K) = 0.647 ± 0.049 eV | Stevens 2009 | 4.4 | 6884.5 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 273.5 ± 1 (×1.044) kcal/mol | Pratt 1981 | 3.6 | 6871.4 | C6H5Br (g) → 6 C (g) + 5 H (g) + Br (g)  | ΔrH°(0 K) = 1276.98 ± 1.60 kcal/mol | Ruscic G4 | 3.3 | 6883.2 | C6H5Cl (g) + Br (g) → C6H5Br (g) + Cl (g)  | ΔrH°(0 K) = 0.647 ± 0.069 eV | Stevens 2009 | 3.1 | 6871.3 | C6H5Br (g) → 6 C (g) + 5 H (g) + Br (g)  | ΔrH°(0 K) = 1277.62 ± 1.72 kcal/mol | Ruscic G3X | 2.5 | 6885.1 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.76 ± 0.02 (×2.954) eV | Rosenstock 1980, Baer 1982 | 2.0 | 6884.7 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.75 ± 0.05 (×1.325) eV | Sergeev 1970 | 1.8 | 6885.2 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.81 ± 0.07 eV | Dunbar 1984 | 1.5 | 6905.1 | C6H5I (cr,l) + HCl (g) → C6H6 (cr,l) + 1/2 I2 (cr,l) + 1/2 Cl2 (g)  | ΔrH°(298.15 K) = 7.13 ± 0.75 kcal/mol | Chernick 1956, Hartley 1951 | 1.3 | 6885.3 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.90 ± 0.05 (×1.646) eV | Lifshitz 1991, est unc | 1.2 | 6884.6 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.73 ± 0.05 (×1.719) eV | Malinovich 1985 | 0.9 | 6902.1 | 2 C6H5I (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) + I2 (cr,l)  | ΔrH°(298.15 K) = -1526.32 ± 2.0 kcal/mol | Smith 1956 | 0.9 | 6914.1 | C6H5NO (g) → [C6H5]+ (g) + NO (g)  | ΔrH°(0 K) = 10.607 ± 0.020 eV | Stevens 2010a | 0.9 | 6885.4 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.74 ± 0.10 eV | Dunbar 1985, Dunbar 1984, est unc | 0.8 | 6519.9 | [C6H5]+ (g) → 6 C (g) + 5 H (g)  | ΔrH°(0 K) = 4198.8 ± 4 kJ/mol | Lau 2006 | 0.7 | 6517.14 | C6H5 (g) → [C6H5]+ (g)  | ΔrH°(0 K) = 8.261 ± 0.035 eV | Lau 2006 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5Br (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Bromobenzene cation | [C6H5Br]+ (g) | | 995.1 | 973.6 | ± 1.3 | kJ/mol | 157.0074 ± 0.0049 | 55450-33-4*0 | 99.1 | Bromobenzene | C6H5Br (cr,l) | | | 60.2 | ± 1.3 | kJ/mol | 157.0079 ± 0.0049 | 108-86-1*500 | 44.5 | Phenylium | [C6H5]+ (g) | | 1149.11 | 1136.33 | ± 0.85 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*0 | 44.5 | Phenylium | [C6H5]+ (g, singlet) | | 1149.11 | 1136.33 | ± 0.85 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*2 | 39.1 | Iodobenzene | C6H5I (cr,l) | | 113.5 | 113.6 | ± 1.1 | kJ/mol | 204.0084 ± 0.0048 | 591-50-4*500 | 38.9 | Iodobenzene | C6H5I (g) | | 178.42 | 162.43 | ± 0.99 | kJ/mol | 204.0084 ± 0.0048 | 591-50-4*0 | 38.9 | Iodobenzene cation | [C6H5I]+ (g) | | 1023.42 | 1007.98 | ± 0.99 | kJ/mol | 204.0078 ± 0.0048 | 38406-85-8*0 | 17.0 | Nitrosobenzene | C6H5NO (g) | | 216.7 | 199.7 | ± 1.2 | kJ/mol | 107.1100 ± 0.0048 | 586-96-9*0 | 16.7 | Phenylium | [C6H5]+ (g, triplet) | | 1251.2 | 1238.1 | ± 1.6 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*1 | 14.3 | Phenyl | C6H5 (g) | | 352.10 | 338.74 | ± 0.63 | kJ/mol | 77.1039 ± 0.0048 | 2396-01-2*0 |
|
Most Influential reactions involving C6H5Br (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.979 | 6872.1 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 72570 ± 5 cm-1 | Kwon 2002 | 0.587 | 6887.1 | C6H5Br (cr,l) → C6H5Br (g)  | ΔrH°(298.15 K) = 44.54 ± 0.22 kJ/mol | Majer 1985, Wadso 1968 | 0.315 | 6887.3 | C6H5Br (cr,l) → C6H5Br (g)  | ΔrH°(298.15 K) = 44.84 ± 0.30 kJ/mol | Basarova 1991, Boublik 1984 | 0.169 | 6884.2 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.827 ± 0.030 eV | Stevens 2009 | 0.122 | 6884.1 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.781 ± 0.029 (×1.215) eV | Stevens 2009 | 0.090 | 6887.2 | C6H5Br (cr,l) → C6H5Br (g)  | ΔrH°(298.15 K) = 44.79 ± 0.56 kJ/mol | ThermoData 2004 | 0.082 | 6883.1 | C6H5Cl (g) + Br (g) → C6H5Br (g) + Cl (g)  | ΔrH°(0 K) = 0.647 ± 0.049 eV | Stevens 2009 | 0.074 | 6884.5 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 273.5 ± 1 (×1.044) kcal/mol | Pratt 1981 | 0.041 | 6883.2 | C6H5Cl (g) + Br (g) → C6H5Br (g) + Cl (g)  | ΔrH°(0 K) = 0.647 ± 0.069 eV | Stevens 2009 | 0.037 | 6871.4 | C6H5Br (g) → 6 C (g) + 5 H (g) + Br (g)  | ΔrH°(0 K) = 1276.98 ± 1.60 kcal/mol | Ruscic G4 | 0.034 | 6884.7 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.75 ± 0.05 (×1.325) eV | Sergeev 1970 | 0.032 | 6871.3 | C6H5Br (g) → 6 C (g) + 5 H (g) + Br (g)  | ΔrH°(0 K) = 1277.62 ± 1.72 kcal/mol | Ruscic G3X | 0.020 | 6884.6 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.73 ± 0.05 (×1.719) eV | Malinovich 1985 | 0.009 | 6872.2 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.991 ± 0.002 (×3.221) eV | Holland 2000 | 0.004 | 6886.3 | C6H5Br (g) → C6H5 (g) + Br (g)  | ΔrH°(1080 K) = 78.1 ± 5 kcal/mol | Rodgers 1967, Ladacki 1953, est unc | 0.003 | 6555.1 | C6H5Br (g) → C6H4 (g) + Br- (g) + H+ (g)  | ΔrH°(298.15 K) = 397 ± 6 kcal/mol | Wenthold 1994, note unc2 | 0.001 | 6911.1 | C6H5Br (g) + [C6H5F]+ (g) → [C6H5Br]+ (g) + C6H5F (g)  | ΔrH°(350 K) = -4.95 ± 0.5 kcal/mol | Lias 1978, 2nd Law, est unc | 0.000 | 6872.9 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Watanabe 1957 | 0.000 | 6872.8 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Bralsford 1960 | 0.000 | 6872.7 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Watanabe 1962 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997229]
|
4
|
|
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022)
[DOI: 10.1021/jacs.2c07740]
|
5
|
|
B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
8
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|