Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Sulfuric acid

Formula: OS(O)(OH)2 (aq, 100000 H2O)
CAS RN: 7664-93-9
ATcT ID: 7664-93-9*861
SMILES: OS(=O)(=O)O
InChI: InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)
InChIKey: QAOWNCQODCNURD-UHFFFAOYSA-N
Hills Formula: H2O4S1

2D Image:

OS(=O)(=O)O
Aliases: OS(O)(OH)2; Sulfuric acid; Hydrogen sulfate; Dipping acid; Oil of vitriol; Vitriol brown oil; Vitriol; Brimstone acid; Matting acid; Nordhausen acid; Contact acid; BOV; UN 1832; UN 2796; O2S(OH)2; (O2S)(OH)2; (SO2)(OH)2; S(O)(O)(OH)2; S(O)2(OH)2; H2SO4
Relative Molecular Mass: 98.0795 ± 0.0061

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-907.14± 0.13kJ/mol

Top contributors to the provenance of ΔfH° of OS(O)(OH)2 (aq, 100000 H2O)

The 7 contributors listed below account for 90.0% of the provenance of ΔfH° of OS(O)(OH)2 (aq, 100000 H2O).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
32.98724.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
24.48843.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/molGood 1960, CODATA Key Vals
13.88843.2 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.92 ± 0.07 (×1.139) kcal/molMansson 1963, CODATA Key Vals
6.18842.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O) ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.325) kcal/molMcCullough 1953, CODATA Key Vals
5.08709.2 S (cr,l) → S2 (g) ΔrG°(570 K) = 9.483 ± 0.138 (×1.719) kcal/molDrowart 1968, Detry 1967, 3rd Law
4.28843.3 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.044) kcal/molWaddington 1956, Mansson 1963, est unc
3.38709.4 S (cr,l) → S2 (g) ΔrG°(600 K) = 8.57 ± 0.29 kcal/molBraune 1951, West 1929, Gurvich TPIS, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of OS(O)(OH)2 (aq, 100000 H2O)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Sulfuric acidOS(O)(OH)2 (aq, 1000 H2O)OS(=O)(=O)O-892.17± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*839
99.9 Sulfuric acidOS(O)(OH)2 (aq, 7000 H2O)OS(=O)(=O)O-899.15± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*846
99.9 Sulfuric acidOS(O)(OH)2 (aq, 3000 H2O)OS(=O)(=O)O-895.76± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*842
99.9 Sulfuric acidOS(O)(OH)2 (aq, 2000 H2O)OS(=O)(=O)O-894.30± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*841
99.9 Sulfuric acidOS(O)(OH)2 (aq, 5000 H2O)OS(=O)(=O)O-897.79± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*844
99.9 Sulfuric acidOS(O)(OH)2 (aq, 1500 H2O)OS(=O)(=O)O-893.35± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*840
99.9 Sulfuric acidOS(O)(OH)2 (aq, 10000 H2O)OS(=O)(=O)O-900.58± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*850
99.9 Sulfuric acidOS(O)(OH)2 (aq, 100 H2O)OS(=O)(=O)O-887.46± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*828
99.9 Sulfuric acidOS(O)(OH)2 (aq, 20000 H2O)OS(=O)(=O)O-903.15± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*852
99.9 Sulfuric acidOS(O)(OH)2 (aq, 4000 H2O)OS(=O)(=O)O-896.94± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*843

Most Influential reactions involving OS(O)(OH)2 (aq, 100000 H2O)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0008876.1 OS(O)(OH)2 (aq, 1000 H2O) → OS(O)(OH)2 (aq, 100000 H2O) ΔrH°(298.15 K) = -14.978 ± 0.004 kJ/molCODATA Key Vals


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.