Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].
|
Sulfoniumyl |
Formula: [H2S]+ (g) |
CAS RN: 26453-60-1 |
ATcT ID: 26453-60-1*0 |
SMILES: [SH2+] |
InChI: InChI=1S/H2S/h1H2/q+1 |
InChIKey: PZLIRJTVVIBARZ-UHFFFAOYSA-N |
Hills Formula: H2S1+ |
2D Image: |
|
Aliases: [H2S]+; Sulfoniumyl; Sulfoniumyl ion; Sulfoniumyl cation; Sulfoniumyl ion (1+); Dihydrogen sulfide cation; Dihydrogen sulfide ion (1+); Sulfur dihydride cation; Sulfur dihydride ion (1+); Sulfur hydride cation; Sulfur hydride ion (1+); Hydrogen sulfide cation; Hydrogen sulfide ion (1+); Hydrosulfuric acid cation; Hydrosulfuric acid ion (1+); Dihydrogen monosulfide cation; Dihydrogen monosulfide ion (1+) |
Relative Molecular Mass: 34.0813 ± 0.0060 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
992.71 | 989.80 | ± 0.19 | kJ/mol |
|
3D Image of [H2S]+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of [H2S]+ (g)The 20 contributors listed below account only for 88.2% of the provenance of ΔfH° of [H2S]+ (g). A total of 22 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 23.1 | 8815.1 | 999 H2S (g) + 999 O2 (g) → 728 OSO (g) + 272 S (cr,l) + 999 H2O (cr,l)  | ΔrH°(298.15 K) = -115042 ± 60 kcal/mol | Kapustinskii 1958 | 15.3 | 8724.1 | S (cr,l) + O2 (g) → OSO (g)  | ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/mol | Eckman 1929, note SO2 | 9.5 | 8821.1 | SH (g) → H (g) + S (g)  | ΔrH°(0 K) = 29245 ± 25 cm-1 | Zhou 2005 | 8.3 | 8843.1 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/mol | Good 1960, CODATA Key Vals | 4.7 | 8843.2 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.92 ± 0.07 (×1.139) kcal/mol | Mansson 1963, CODATA Key Vals | 3.0 | 8717.10 | S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g)  | ΔrH°(0 K) = 75.40 ± 0.25 kcal/mol | Karton 2006, Karton 2011 | 3.0 | 8717.11 | S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g)  | ΔrH°(0 K) = 75.51 ± 0.25 kcal/mol | Feller 2008 | 3.0 | 8709.2 | 2 S (cr,l) → S2 (g)  | ΔrG°(570 K) = 9.483 ± 0.138 (×1.719) kcal/mol | Drowart 1968, Detry 1967, 3rd Law | 2.2 | 8817.1 | H2S (g) + 3/2 O2 (g) → OSO (g) + H2O (cr,l)  | ΔrH°(298.15 K) = -134.24 ± 0.16 kcal/mol | Kapustinskii 1958 | 2.1 | 8842.1 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O)  | ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.325) kcal/mol | McCullough 1953, CODATA Key Vals | 2.0 | 8709.4 | 2 S (cr,l) → S2 (g)  | ΔrG°(600 K) = 8.57 ± 0.29 kcal/mol | Braune 1951, West 1929, Gurvich TPIS, 3rd Law | 1.8 | 8711.4 | S2 (g) + 2 H2 (g) → 2 H2S (g)  | ΔrG°(1515 K) = -31.42 ± 0.80 (×1.719) kJ/mol | Randall 1918, Gurvich TPIS, 2nd Law | 1.7 | 8743.1 | SO (g) → S (g) + O (g)  | ΔrH°(0 K) = 43275 ± 5 cm-1 | Clerbaux 1994 | 1.4 | 8843.3 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.044) kcal/mol | Waddington 1956, Mansson 1963, est unc | 1.2 | 8808.13 | H2S (g) → 2 H (g) + S (g)  | ΔrH°(0 K) = 173.54 ± 0.20 kcal/mol | Feller 2008 | 1.2 | 8822.12 | SH (g) → H (g) + S (g)  | ΔrH°(0 K) = 83.69 ± 0.20 kcal/mol | Feller 2008 | 1.1 | 8717.9 | S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g)  | ΔrH°(0 K) = 75.57 ± 0.40 kcal/mol | Karton 2011 | 1.0 | 8816.1 | H2S (g) + 1/2 O2 (g) → S (cr,l) + H2O (cr,l)  | ΔrH°(298.15 K) = -63.66 ± 0.42 kcal/mol | Kapustinskii 1958 | 0.9 | 8820.3 | H2S (g) → H2 (g) + S+ (g)  | ΔrH°(0 K) = 13.40 ± 0.01 eV | Dibeler 1968a | 0.9 | 8820.2 | H2S (g) → H2 (g) + S+ (g)  | ΔrH°(0 K) = 13.41 ± 0.01 eV | Eland 1979, Jones 1972, est unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of [H2S]+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.5 | Hydrogen sulfide | H2S (g) | | -17.32 | -20.24 | ± 0.18 | kJ/mol | 34.0819 ± 0.0060 | 7783-06-4*0 | 98.9 | Hydrosulfide | [SH]- (g) | | -80.48 | -80.48 | ± 0.19 | kJ/mol | 33.0745 ± 0.0060 | 15035-72-0*0 | 98.9 | Sulfanyl | SH (g) | | 142.86 | 143.31 | ± 0.19 | kJ/mol | 33.0739 ± 0.0060 | 13940-21-1*0 | 97.0 | Sulfanylium | [SH]+ (g) | | 1148.41 | 1148.41 | ± 0.19 | kJ/mol | 33.0734 ± 0.0060 | 12273-42-6*0 | 64.5 | Monosulfur anion | S- (g) | | 76.48 | 78.53 | ± 0.14 | kJ/mol | 32.0665 ± 0.0060 | 14337-03-2*0 | 64.5 | Sulfur | S (g) | | 276.89 | 279.13 | ± 0.14 | kJ/mol | 32.0660 ± 0.0060 | 7704-34-9*0 | 64.3 | Monosulfur cation | S+ (g) | | 1276.48 | 1278.26 | ± 0.14 | kJ/mol | 32.0655 ± 0.0060 | 14701-12-3*0 | 64.3 | Disulfur | S2 (g) | | 127.48 | 127.79 | ± 0.27 | kJ/mol | 64.1320 ± 0.0120 | 23550-45-0*0 | 63.3 | Sulfur atom dication | [S]+2 (g) | | 3528.24 | 3531.93 | ± 0.14 | kJ/mol | 32.0649 ± 0.0060 | 14127-58-3*0 | 62.2 | Sulfur monoxide | SO (g) | | 6.02 | 6.06 | ± 0.13 | kJ/mol | 48.0654 ± 0.0060 | 13827-32-2*0 |
|
Most Influential reactions involving [H2S]+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.472 | 8809.2 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 84432 ± 2 cm-1 | Fischer 1993 | 0.472 | 8809.1 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 84432 ± 2 cm-1 | Wiedmann 1992a | 0.029 | 8809.5 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.4689 ± 0.0010 eV | Hochlaf 2004 | 0.011 | 8809.6 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.4666 ± 0.0010 (×1.61) eV | Baltzer 1995, est unc | 0.008 | 8809.3 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 84420 ± 15 cm-1 | Price 1950, Price 1936b | 0.005 | 8809.7 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.466 ± 0.002 (×1.114) eV | Karlsson 1976 | 0.000 | 8810.8 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.47 ± 0.01 eV | Price 1935b | 0.000 | 8810.7 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.46 ± 0.01 eV | Watanabe 1954 | 0.000 | 8810.3 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.47 ± 0.01 eV | Potts 1972b, est unc | 0.000 | 8809.8 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.460 ± 0.011 eV | Cheng 1998 | 0.000 | 8809.4 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 84470 ± 100 cm-1 | Price 1936b, Price 1950 | 0.000 | 8810.9 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.48 ± 0.02 eV | Bock 1972, est unc | 0.000 | 8810.10 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.47 ± 0.02 eV | Schweig 1974, est unc | 0.000 | 8810.5 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.43 ± 0.01 (×3.83) eV | Dibeler 1968a | 0.000 | 8809.19 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.461 ± 0.040 eV | Parthiban 2001 | 0.000 | 8809.18 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.465 ± 0.040 eV | Ruscic W1RO, Parthiban 2001 | 0.000 | 8810.6 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.42 ± 0.02 (×2.43) eV | Al-Joboury 1964, est unc | 0.000 | 8810.1 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.48 ± 0.05 eV | Kimura 1981, est unc | 0.000 | 8810.2 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.43 ± 0.05 eV | Natalis 1973, est unc | 0.000 | 8810.4 | H2S (g) → [H2S]+ (g)  | ΔrH°(0 K) = 10.43 ± 0.05 eV | Delwiche 1970, Delwiche 1970a, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997229]
|
4
|
|
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022)
[DOI: 10.1021/jacs.2c07740]
|
5
|
|
B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
8
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|