Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4]. |
|||||||||||||||||||||||||||||||||||
Oxide | |||||||||||||||||||||||||||||||||||
Formula: [O]-2 (g) | |||||||||||||||||||||||||||||||||||
CAS RN: 16833-27-5 | |||||||||||||||||||||||||||||||||||
ATcT ID: 16833-27-5*0 | |||||||||||||||||||||||||||||||||||
SMILES: [O-2] | |||||||||||||||||||||||||||||||||||
InChI: InChI=1S/O/q-2 | |||||||||||||||||||||||||||||||||||
InChIKey: AHKZTVQIVOEVFO-UHFFFAOYSA-N | |||||||||||||||||||||||||||||||||||
Hills Formula: O1-2 | |||||||||||||||||||||||||||||||||||
2D Image: | |||||||||||||||||||||||||||||||||||
Aliases: [O]-2; Oxide; Oxygen atom dianion; Oxygen atom ion (2-); Atomic oxygen dianion; Atomic oxygen ion (2-); Monooxygen dianion; Monooxygen ion (2-); Monoxygen dianion; Monoxygen ion (2-); Oxygen dianion; Oxygen ion (2-) | |||||||||||||||||||||||||||||||||||
Relative Molecular Mass: 16.00050 ± 0.00030 | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
3D Image of [O]-2 (g) | |||||||||||||||||||||||||||||||||||
spin ON spin OFF | |||||||||||||||||||||||||||||||||||
Top contributors to the provenance of ΔfH° of [O]-2 (g)The 6 contributors listed below account for 96.7% of the provenance of ΔfH° of [O]-2 (g).Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network. | |||||||||||||||||||||||||||||||||||
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference |
---|---|---|---|---|
0.368 | 32.4 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -5.660 ± 0.25 eV | Ruscic G4, est unc |
0.177 | 32.6 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -5.421 ± 0.36 eV | Ruscic CBS-n, est unc |
0.144 | 32.7 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -6.043 ± 0.20 (×2) eV | Ruscic W1RO, est unc |
0.092 | 32.8 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -5.65 ± 0.5 eV | Sommerfeld 2000, est unc |
0.092 | 32.2 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -5.31 ± 0.5 eV | Edlen 1960, Herrick 1975 |
0.092 | 32.1 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -5.38 ± 0.5 eV | Herrick 1975 |
0.023 | 32.3 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -6.53 ± 1 eV | Kaufman 1963, Herrick 1975 |
0.009 | 32.5 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -7.154 ± 0.40 (×3.83) eV | Ruscic CBS-n, est unc |
1 |
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited. J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y] |
|
2 |
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, Active Thermochemical Tables: Thermochemistry for the 21st Century. J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078] |
|
3 |
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997229] |
|
4 |
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740] |
|
5 |
B. Ruscic and D. H. Bross Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects. Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046] |
|
6 |
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton, Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322] |
|
7 |
B. Ruscic, Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables. Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605] |
|
8 |
B. Ruscic and D. H. Bross, Thermochemistry Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2] |