Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4]. |
||||||||||
Dichlorine cation | ||||||||||
Formula: [Cl2]+ (g) | ||||||||||
CAS RN: 12595-90-3 | ||||||||||
ATcT ID: 12595-90-3*0 | ||||||||||
SMILES: Cl[Cl+] | ||||||||||
InChI: InChI=1S/Cl2/c1-2/q+1 | ||||||||||
InChIKey: IPYDCMMBWLZPDH-UHFFFAOYSA-N | ||||||||||
Hills Formula: Cl2+ | ||||||||||
2D Image: | ||||||||||
Aliases: [Cl2]+; Dichlorine cation; Diatomic chlorine cation; Diatomic chlorine ion (1+); Molecular chlorine cation; Molecular chlorine ion (1+); Chlorine molecule cation; Chlorine molecule ion (1+); Chlorine cation; Chlorine ion (1+); Dichlorine ion (1+) | ||||||||||
Relative Molecular Mass: 70.9049 ± 0.0018 | ||||||||||
| ||||||||||
3D Image of [Cl2]+ (g) | ||||||||||
spin ON spin OFF | ||||||||||
Top contributors to the provenance of ΔfH° of [Cl2]+ (g)The 1 contributors listed below account for 91.1% of the provenance of ΔfH° of [Cl2]+ (g).Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network. | ||||||||||
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference |
---|---|---|---|---|
0.911 | 740.1 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 92647.37 ± 0.5 cm-1 | Mollet 2013, note unc |
0.087 | 740.2 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 92645.6 ± 1.0 (×1.61) cm-1 | Li 2007 |
0.000 | 740.17 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 264.915 ± 0.097 kcal/mol | Feller 2017a |
0.000 | 740.3 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.481 ± 0.003 (×1.957) eV | Yencha 1995 |
0.000 | 740.4 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.480 ± 0.005 (×1.384) eV | Van Lonkhuyzen 1984 |
0.000 | 740.5 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.49 ± 0.01 eV | Cornford 1971, est unc |
0.000 | 740.7 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.49 ± 0.01 eV | Anderson 1971, est unc |
0.000 | 740.9 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.49 ± 0.01 eV | Dyke 1984c, est unc |
0.000 | 740.8 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.48 ± 0.01 eV | Watanabe 1957 |
0.000 | 740.6 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.51 ± 0.01 (×2.327) eV | Potts 1971 |
0.000 | 740.16 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.506 ± 0.040 eV | Ruscic W1RO |
0.000 | 742.7 | [Cl2]+ (g) → 2 Cl (g)  | ΔrH°(0 K) = -208.79 ± 1.50 kcal/mol | Ruscic W1RO |
0.000 | 742.4 | [Cl2]+ (g) → 2 Cl (g)  | ΔrH°(0 K) = -207.81 ± 1.60 kcal/mol | Ruscic G4 |
0.000 | 742.3 | [Cl2]+ (g) → 2 Cl (g)  | ΔrH°(0 K) = -209.13 ± 1.72 kcal/mol | Ruscic G3X |
0.000 | 740.13 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.466 ± 0.073 eV | Ruscic G4 |
0.000 | 740.12 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.470 ± 0.093 eV | Ruscic G3X |
0.000 | 740.15 | Cl2 (g) → [Cl2]+ (g)  | ΔrH°(0 K) = 11.495 ± 0.099 eV | Ruscic CBS-n |
1 |
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited. J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y] |
|
2 |
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, Active Thermochemical Tables: Thermochemistry for the 21st Century. J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078] |
|
3 |
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997229] |
|
4 |
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740] |
|
5 |
B. Ruscic and D. H. Bross Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects. Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046] |
|
6 |
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton, Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322] |
|
7 |
B. Ruscic, Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables. Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605] |
|
8 |
B. Ruscic and D. H. Bross, Thermochemistry Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2] |