Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Carbonate

Formula: [OC(O)O]-2 (aq)
CAS RN: 3812-32-6
ATcT ID: 3812-32-6*800
SMILES: [O-]C(=O)[O-]
InChI: InChI=1S/CH2O3/c2-1(3)4/h(H2,2,3,4)/p-2
InChIKey: BVKZGUZCCUSVTD-UHFFFAOYSA-L
InChI: InChI=1S/CO3/c2-1(3)4/q-2
InChIKey: ZNHAHGQGZASUPF-UHFFFAOYSA-N
Hills Formula: C1O3-2

2D Image:

[O-]C(=O)[O-]
Aliases: [OC(O)O]-2; Carbonate; Carbonate dianion; Carbonate ion (2-); OC(O)O-2; [CO3]-2; CO3-2
Relative Molecular Mass: 60.0100 ± 0.0012

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-675.160± 0.053kJ/mol

Top contributors to the provenance of ΔfH° of [OC(O)O]-2 (aq)

The 17 contributors listed below account for 90.2% of the provenance of ΔfH° of [OC(O)O]-2 (aq).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
36.03124.1 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrG°(298.15 K) = 14.092 ± 0.010 kcal/molMacInnes 1933, Harned 1941, Berg 1978a, CODATA Key Vals
29.33122.1 CO2 (g) H2O (cr,l) → [HOC(O)O]- (aq) H+ (aq) ΔrG°(298.15 K) = 10.666 ± 0.007 kcal/molBerg 1978a, CODATA Key Vals, Bates 1978
5.73124.3 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrH°(298.15 K) = 3.513 ± 0.025 kcal/molBerg 1978, Berg 1978a, CODATA Key Vals
4.6121.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
4.03124.5 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrG°(298.15 K) = 14.090 ± 0.030 kcal/molRyzhenko 1963, Berg 1978a, est unc
2.22279.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.92134.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.72277.7 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/molSchley 2010
0.72134.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
0.72134.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
0.52134.11 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
0.43123.1 CO2 (g) [OH]- (aq) → [HOC(O)O]- (aq) ΔrH°(298.15 K) = -15.870 ± 0.033 (×1.682) kcal/molBerg 1978, Berg 1978a, CODATA Key Vals
0.43124.2 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrH°(298.15 K) = 3.603 ± 0.050 (×1.795) kcal/molMacInnes 1933, Harned 1941, est unc
0.33124.7 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrG°(298.15 K) = 58.96 ± 0.40 kJ/molNBS Tables 1989
0.33124.8 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrH°(298.15 K) = 14.85 ± 0.40 kJ/molNBS Tables 1989
0.33124.6 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrH°(298.15 K) = 3.500 ± 0.100 kcal/molPitzer 1937
0.32134.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e

Top 10 species with enthalpies of formation correlated to the ΔfH° of [OC(O)O]-2 (aq)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
72.5 Hydrogen carbonate[HOC(O)O]- (aq)O[C](=O)[O-]-689.862± 0.039kJ/mol61.0174 ±
0.0012
71-52-3*800
43.5 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.995± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
39.4 WaterH2O (g, para)O-238.902-241.805± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*2
39.4 WaterH2O (g)O-238.902-241.805± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*0
39.4 WaterH2O (cr, l, eq.press.)O-286.274-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*499
39.4 WaterH2O (l, eq.press.)O-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
39.4 Oxonium[H3O]+ (aq)[OH3+]-285.800± 0.022kJ/mol19.02267 ±
0.00037
13968-08-6*800
39.4 WaterH2O (l)O-285.800± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
39.4 WaterH2O (cr,l)O-286.272-285.800± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
39.4 WaterH2O (g, ortho)O-238.617-241.805± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*1

Most Influential reactions involving [OC(O)O]-2 (aq)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7603124.1 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrG°(298.15 K) = 14.092 ± 0.010 kcal/molMacInnes 1933, Harned 1941, Berg 1978a, CODATA Key Vals
0.1213124.3 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrH°(298.15 K) = 3.513 ± 0.025 kcal/molBerg 1978, Berg 1978a, CODATA Key Vals
0.0843124.5 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrG°(298.15 K) = 14.090 ± 0.030 kcal/molRyzhenko 1963, Berg 1978a, est unc
0.0093124.2 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrH°(298.15 K) = 3.603 ± 0.050 (×1.795) kcal/molMacInnes 1933, Harned 1941, est unc
0.0083124.8 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrH°(298.15 K) = 14.85 ± 0.40 kJ/molNBS Tables 1989
0.0083124.7 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrG°(298.15 K) = 58.96 ± 0.40 kJ/molNBS Tables 1989
0.0073124.6 [HOC(O)O]- (aq) → [OC(O)O]-2 (aq) H+ (aq) ΔrH°(298.15 K) = 3.500 ± 0.100 kcal/molPitzer 1937


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.