Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Cyclopentane

Formula: CH2(CH2CH2CH2CH2) (g)
CAS RN: 287-92-3
ATcT ID: 287-92-3*0
SMILES: C1CCCC1
InChI: InChI=1S/C5H10/c1-2-4-5-3-1/h1-5H2
InChIKey: RGSFGYAAUTVSQA-UHFFFAOYSA-N
Hills Formula: C5H10

2D Image:

C1CCCC1
Aliases: CH2(CH2CH2CH2CH2); Cyclopentane; cyc-C5H10; Pentamethylene; Exxsol HP 95; H&N; Marukazol FH; NSC 60213; Zeonsolv HP; UN 1146
Relative Molecular Mass: 70.1329 ± 0.0041

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-43.70-76.27± 0.41kJ/mol

3D Image of CH2(CH2CH2CH2CH2) (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH2(CH2CH2CH2CH2) (g)

The 20 contributors listed below account only for 74.9% of the provenance of ΔfH° of CH2(CH2CH2CH2CH2) (g).
A total of 71 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
25.53790.1 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -3290.85 ± 0.72 kJ/molJohnson 1946
21.93790.4 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.84 ± 0.14 (×1.325) kcal/molKaarsemaker 1952, as quoted by Cox 1970
8.43790.3 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.61 ± 0.30 kcal/molSpitzer 1947
2.13800.1 CH2(CHCHCHCH) (g) + 2 H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(355.15 K) = -50.907 ± 0.200 kcal/molKistiakowsky 1936
2.03795.2 CH2(CH2CHCHCH2) (l) + 7 O2 (g) → 5 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -744.54 ± 0.14 (×4.269) kcal/molLabbauf 1961
1.7121.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.53795.1 CH2(CH2CHCHCH2) (l) + 7 O2 (g) → 5 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -744.45 ± 0.17 (×4) kcal/molProsen 1944c, Labbauf 1961, Epstein 1949
1.43797.6 CH2(CHCHCHCH) (g) → 5 C (g) + 6 H (g) ΔrH°(0 K) = 1123.70 ± 0.50 kcal/molKarton 2017
0.92279.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.96622.2 CH2(CH2CH2CH2CH2CH2C (cr,l) + 21/2 O2 (g) → 7 CO2 (g) + 7 H2O (cr,l) ΔrH°(298.15 K) = -1099.09 ± 0.14 kcal/molKaarsemaker 1952, as quoted by Cox 1970
0.93842.5 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.53 ± 0.85 kcal/molRuscic W1RO
0.97943.5 CH3CH(CH2CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH(CH3)3 (g) ΔrH°(0 K) = 0.30 ± 0.85 kcal/molRuscic W1RO
0.83842.1 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.97 ± 0.90 kcal/molRuscic G3X
0.83842.2 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.96 ± 0.90 kcal/molRuscic G4
0.83842.4 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.76 ± 0.90 kcal/molRuscic CBS-n
0.82134.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.87943.2 CH3CH(CH2CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH(CH3)3 (g) ΔrH°(0 K) = 0.49 ± 0.90 kcal/molRuscic G4
0.87943.4 CH3CH(CH2CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH(CH3)3 (g) ΔrH°(0 K) = 0.45 ± 0.90 kcal/molRuscic CBS-n
0.87943.1 CH3CH(CH2CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH(CH3)3 (g) ΔrH°(0 K) = 0.43 ± 0.90 kcal/molRuscic G3X
0.66621.5 CH2(CH2CH2CH2CH2CH2C (g) CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = -0.69 ± 0.85 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2(CH2CH2CH2CH2) (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.3 CyclopentaneCH2(CH2CH2CH2CH2) (l)C1CCCC1-104.96± 0.41kJ/mol70.1329 ±
0.0041
287-92-3*590
86.0 CyclopenteneCH2(CH2CHCHCH2) (g)C1CC=CC159.5835.32± 0.46kJ/mol68.1170 ±
0.0040
142-29-0*0
76.8 CyclopenteneCH2(CH2CHCHCH2) (l)C1CC=CC17.04± 0.51kJ/mol68.1170 ±
0.0040
142-29-0*590
69.0 CyclopentadieneCH2(CHCHCHCH) (l)C1C=CC=C1110.06± 0.58kJ/mol66.1011 ±
0.0040
542-92-7*590
47.3 CyclopentadieneCH2(CHCHCHCH) (g)C1C=CC=C1151.43134.31± 0.60kJ/mol66.1011 ±
0.0040
542-92-7*0
31.6 Norbornadiene(CHCH)(CHCH2CH)(CHCH (g)C1C2C=CC1C=C2267.65242.21± 0.98kJ/mol92.1384 ±
0.0056
121-46-0*0
27.0 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.995± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
26.6 Norbornadiene(CHCH)(CHCH2CH)(CHCH (l)C1C2C=CC1C=C2208.9± 1.2kJ/mol92.1384 ±
0.0056
121-46-0*500
24.1 WaterH2O (l)O-285.800± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
24.1 WaterH2O (l, eq.press.)O-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589

Most Influential reactions involving CH2(CH2CH2CH2CH2) (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8553792.1 CH2(CH2CHCHCH2) (g) H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = -26.67 ± 0.06 kcal/molDolliver 1937
0.4373789.1 CH2(CH2CH2CH2CH2) (l) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = 28.72 ± 0.07 kJ/molMajer 1985
0.4183800.1 CH2(CHCHCHCH) (g) + 2 H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(355.15 K) = -50.907 ± 0.200 kcal/molKistiakowsky 1936
0.3063789.3 CH2(CH2CH2CH2CH2) (l) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = 6.86 ± 0.02 kcal/molAston 1943, est unc
0.1743789.2 CH2(CH2CH2CH2CH2) (l) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = 6.83 ± 0.02 (×1.325) kcal/molMcCullough 1959, note unc
0.0763789.4 CH2(CH2CH2CH2CH2) (l) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = 6.86 ± 0.04 kcal/molProsen 1946
0.0413792.2 CH2(CH2CHCHCH2) (g) H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = -26.94 ± 0.13 (×2.089) kcal/molAllinger 1982
0.0283802.5 CH2(CHCHCHCH) (g) + 2 CH3CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) + 2 CH3CHCH2 (g) ΔrH°(0 K) = 9.86 ± 0.85 kcal/molRuscic W1RO
0.0286621.5 CH2(CH2CH2CH2CH2CH2C (g) CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = -0.69 ± 0.85 kcal/molRuscic W1RO
0.0253802.1 CH2(CHCHCHCH) (g) + 2 CH3CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) + 2 CH3CHCH2 (g) ΔrH°(0 K) = 9.40 ± 0.90 kcal/molRuscic G3X
0.0253802.2 CH2(CHCHCHCH) (g) + 2 CH3CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) + 2 CH3CHCH2 (g) ΔrH°(0 K) = 9.50 ± 0.90 kcal/molRuscic G4
0.0253802.4 CH2(CHCHCHCH) (g) + 2 CH3CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) + 2 CH3CHCH2 (g) ΔrH°(0 K) = 10.07 ± 0.90 kcal/molRuscic CBS-n
0.0253803.5 CH2(CHCHCHCH) (g) + 2 CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) + 2 CH2CH2 (g) ΔrH°(0 K) = 15.37 ± 0.85 kcal/molRuscic W1RO
0.0256621.1 CH2(CH2CH2CH2CH2CH2C (g) CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = -0.05 ± 0.90 kcal/molRuscic G3X
0.0256621.2 CH2(CH2CH2CH2CH2CH2C (g) CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = -0.03 ± 0.90 kcal/molRuscic G4
0.0256621.4 CH2(CH2CH2CH2CH2CH2C (g) CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = -0.22 ± 0.90 kcal/molRuscic CBS-n
0.0237943.5 CH3CH(CH2CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH(CH3)3 (g) ΔrH°(0 K) = 0.30 ± 0.85 kcal/molRuscic W1RO
0.0223803.1 CH2(CHCHCHCH) (g) + 2 CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) + 2 CH2CH2 (g) ΔrH°(0 K) = 14.76 ± 0.90 kcal/molRuscic G3X
0.0223803.4 CH2(CHCHCHCH) (g) + 2 CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) + 2 CH2CH2 (g) ΔrH°(0 K) = 15.76 ± 0.90 kcal/molRuscic CBS-n
0.0223803.2 CH2(CHCHCHCH) (g) + 2 CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) + 2 CH2CH2 (g) ΔrH°(0 K) = 14.93 ± 0.90 kcal/molRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.