Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Difluorine cation

Formula: [F2]+ (g)
CAS RN: 12184-86-0
ATcT ID: 12184-86-0*0
SMILES: F[F+]
InChI: InChI=1S/F2/c1-2/q+1
InChIKey: PCZTVBPMAMPCIP-UHFFFAOYSA-N
Hills Formula: F2+

2D Image:

F[F+]
Aliases: [F2]+; Difluorine cation; Difluorine ion (1+); Diatomic fluorine cation; Diatomic fluorine ion (1+); Molecular fluorine cation; Molecular fluorine ion (1+); Fluorine molecule cation; Fluorine molecule ion (1+); Fluorine cation; Fluorine ion (1+)
Relative Molecular Mass: 37.9962578 ± 0.0000010

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1514.3011514.475± 0.013kJ/mol

3D Image of [F2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [F2]+ (g)

The 1 contributors listed below account for 99.1% of the provenance of ΔfH° of [F2]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
99.1436.1 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 126585.7 ± 1.0 cm-1Yang 2005, note unc


Most Influential reactions involving [F2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.991436.1 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 126585.7 ± 1.0 cm-1Yang 2005, note unc
0.134467.2 [F3]+ (g) → [F2]+ (g) F (g) ΔrH°(0 K) = 15.68 ± 1.50 kcal/molRuscic W1RO
0.117467.1 [F3]+ (g) → [F2]+ (g) F (g) ΔrH°(0 K) = 15.63 ± 1.60 kcal/molRuscic G4
0.075467.3 [F3]+ (g) → [F2]+ (g) F (g) ΔrH°(0 K) = 16.4 ± 2 kcal/molValeev 1998, est unc
0.003436.4 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.693 ± 0.002 eVCormack 1996
0.001436.5 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.697 ± 0.003 eVVan Lonkhuyzen 1984
0.001436.8 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.694 ± 0.004 eVGuyon 1976a, est unc
0.001436.13 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.692 ± 0.004 eVBerkowitz 1971
0.000436.12 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.69 ± 0.01 eVDibeler 1969
0.000436.10 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.70 ± 0.01 eVCornford 1971, Frost 1967, Dyke 1984c, est unc
0.000436.6 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.70 ± 0.01 eVBieri 1980
0.000436.11 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.70 ± 0.01 eVAnderson 1971, est unc
0.000436.9 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.70 ± 0.01 eVPotts 1971
0.000436.7 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.70 ± 0.01 eVDyke 1984c, est unc
0.000436.3 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 126652 ± 150 cm-1Gole 1972
0.000436.2 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 126720 ± 150 cm-1Iczkowski 1959, est unc
0.000439.4 [F2]+ (g) → 2 F (g) ΔrH°(0 K) = -325.53 ± 1.60 kcal/molRuscic G4
0.000439.8 [F2]+ (g) → 2 F (g) ΔrH°(0 K) = -326.66 ± 1.50 (×1.114) kcal/molRuscic W1RO
0.000439.3 [F2]+ (g) → 2 F (g) ΔrH°(0 K) = -327.53 ± 1.72 (×1.477) kcal/molRuscic G3X
0.000437.8 F2 (g) → [F2]+ (g) ΔrH°(0 K) = 15.734 ± 0.040 eVRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
Uncertainties The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
Website Functionality Credits The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
Acknowledgement This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.