Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Dihydrogen cation

Formula: [H2]+ (g, ortho)
CAS RN: 12184-90-6
ATcT ID: 12184-90-6*1
SMILES: [H][H+]
InChI: InChI=1S/H2/h1H/q+1
InChIKey: ZZIJOQHRUPVPQC-UHFFFAOYSA-N
Hills Formula: H2+

2D Image:

[H][H+]
Aliases: [H2]+; Dihydrogen cation; Dihydrogen ion (1+); Hydrogen molecule cation; Hydrogen molecular ion (1+); Hydrogen cation; Hydrogen ion (1+); Molecular hydrogen cation; Molecular hydrogen ion (1+); Diatomic hydrogen cation; Diatomic hydrogen ion (1+)
Relative Molecular Mass: 2.01533 ± 0.00014

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1489.0601488.480± 0.000kJ/mol

3D Image of [H2]+ (g, ortho)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [H2]+ (g, ortho)

The 10 contributors listed below account for 90.8% of the provenance of ΔfH° of [H2]+ (g, ortho).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
29.665.1 H2 (g, para) → H2 (g) ΔrH°(0 K) = 0.0 ± 0.0 cm-1triv
13.563.13 H2 (g) → [H2]+ (g) ΔrH°(0 K) = 124417.49113 ± 0.00074 cm-1Liu 2012, note unc
9.672.1 [H2]+ (g, para) → [H2]+ (g, ortho) ΔrH°(0 K) = 58.2336750974 ± 0.0000000016 cm-1Korobov 2018, note unc, Schuder 2017
8.767.1 H2 (g, ortho) → [H2]+ (g) ΔrH°(0 K) = 124299.00429 ± 0.00071 cm-1Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008
6.668.2 H2 (g, ortho) → [H2]+ (g, ortho) ΔrH°(0 K) = 124357.238062 ± 0.000050 cm-1Cheng 2018a, note unc
6.668.3 H2 (g, ortho) → [H2]+ (g, ortho) ΔrH°(0 K) = 124357.23797 ± 0.00072 cm-1Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008
6.668.1 H2 (g, ortho) → [H2]+ (g, ortho) ΔrH°(0 K) = 124357.238003 ± 0.000022 cm-1Holsch 2019, note unc
5.971.1 [H2]+ (g, para) → [H2]+ (g) ΔrH°(0 K) = 0. ± 0. cm-1Moss 1993b
1.676.2 H (g) → H+ (g) ΔrH°(0 K) = 109678.7717426 ± 0.0000020 cm-1Liu 2009, note unc
1.676.1 H (g) → H+ (g) ΔrH°(0 K) = 109678.77174307 ± 0.00000020 cm-1Mohr 2016, Sprecher 2010, note unc, Tiesinga 2021

Top 10 species with enthalpies of formation correlated to the ΔfH° of [H2]+ (g, ortho)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
82.0 DihydrogenH2 (g, ortho)[H][H]1.4170.019± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*1
71.0 DihydrogenH2 (g, para)[H][H]-0.000-0.058± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*2
68.5 Dihydrogen cation[H2]+ (g, para)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*2
52.5 Dihydrogen cation[H2]+ (g)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*0
40.7 HydronH+ (g)[H+]1528.0841530.047± 0.000kJ/mol1.007391 ±
0.000070
12408-02-5*0
11.8 Deuterium hydride cation[HD]+ (g)[H][2H+]1490.4981490.587± 0.000kJ/mol3.021493 ±
0.000070
12181-16-7*0
11.6 Hydrogen atomH (g)[H]216.034217.998± 0.000kJ/mol1.007940 ±
0.000070
12385-13-6*0
8.7 Deuterium hydrideHD (g)[H][2H]0.3280.319± 0.000kJ/mol3.022042 ±
0.000070
13983-20-5*0
3.4 HydrideH- (g)[H-]143.264145.228± 0.000kJ/mol1.008489 ±
0.000070
12184-88-2*0

Most Influential reactions involving [H2]+ (g, ortho)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.51872.1 [H2]+ (g, para) → [H2]+ (g, ortho) ΔrH°(0 K) = 58.2336750974 ± 0.0000000016 cm-1Korobov 2018, note unc, Schuder 2017
0.27968.1 H2 (g, ortho) → [H2]+ (g, ortho) ΔrH°(0 K) = 124357.238003 ± 0.000022 cm-1Holsch 2019, note unc
0.27968.2 H2 (g, ortho) → [H2]+ (g, ortho) ΔrH°(0 K) = 124357.238062 ± 0.000050 cm-1Cheng 2018a, note unc
0.27968.3 H2 (g, ortho) → [H2]+ (g, ortho) ΔrH°(0 K) = 124357.23797 ± 0.00072 cm-1Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008
0.00072.4 [H2]+ (g, para) → [H2]+ (g, ortho) ΔrH°(0 K) = 58.2032955 ± 0.0000002 (×30.64) cm-1Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008, Liu 2009
0.00072.2 [H2]+ (g, para) → [H2]+ (g, ortho) ΔrH°(0 K) = 58.2337 ± 0.05 cm-1Moss 1993b, est unc
0.00068.4 H2 (g, ortho) → [H2]+ (g, ortho) ΔrH°(0 K) = 124357.45 ± 0.07 (×3.084) cm-1Glab 1987
0.00070.1 H2 (g, para) → [H2]+ (g, ortho) ΔrH°(0 K) = 124476.0 ± 0.5 cm-1Herzberg 1972, est unc
0.00072.3 [H2]+ (g, para) → [H2]+ (g, ortho) ΔrH°(0 K) = 58.8 ± 0.2 (×2.89) cm-1Herzberg 1972
0.00068.5 H2 (g, ortho) → [H2]+ (g, ortho) ΔrH°(0 K) = 124357.5 ± 0.5 cm-1Herzberg 1972, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.