Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Fluorobenzene

Formula: C6H5F (cr,l)
CAS RN: 462-06-6
ATcT ID: 462-06-6*500
SMILES: c1ccc(cc1)F
InChI: InChI=1S/C6H5F/c7-6-4-2-1-3-5-6/h1-5H
InChIKey: PYLWMHQQBFSUBP-UHFFFAOYSA-N
Hills Formula: C6H5F1

2D Image:

c1ccc(cc1)F
Aliases: Fluorobenzene; Phenyl fluoride; Monofluorobenzene; Benzenyl fluoride; C6H5F; UN 2387
Relative Molecular Mass: 96.1023 ± 0.0048

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-148.77-146.35± 0.39kJ/mol

Top contributors to the provenance of ΔfH° of C6H5F (cr,l)

The 20 contributors listed below account only for 88.1% of the provenance of ΔfH° of C6H5F (cr,l).
A total of 27 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
15.46814.1 C6F6 (g) + 5 C6H6 (g) → 6 C6H5F (g) ΔrH°(0 K) = -32.57 ± 0.90 kcal/molRuscic G3X
15.46814.2 C6F6 (g) + 5 C6H6 (g) → 6 C6H5F (g) ΔrH°(0 K) = -32.98 ± 0.90 kcal/molRuscic G4
15.46814.4 C6F6 (g) + 5 C6H6 (g) → 6 C6H5F (g) ΔrH°(0 K) = -32.05 ± 0.90 kcal/molRuscic CBS-n
12.56814.3 C6F6 (g) + 5 C6H6 (g) → 6 C6H5F (g) ΔrH°(0 K) = -32.44 ± 1.0 kcal/molRuscic CBS-n
10.86818.1 999 C6F6 (cr,l) + 999 O2 (g) → 999 CO2 (g) + 999 CF4 (g) + 834 F2 (g) ΔrH°(298.15 K) = -469109 ± 200 kcal/molKrech 1972
3.66510.3 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.97 ± 0.09 kcal/molCoops 1947, Coops 1946
2.96510.4 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.92 ± 0.10 kcal/molGood 1969
2.96510.1 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.98 ± 0.10 kcal/molProsen 1945a, as quoted by Cox 1970
2.06510.2 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.96 ± 0.12 kcal/molCox 1970
1.42134.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.76804.1 C6H5F (cr,l) + 7 O2 (g) → 6 CO2 (g) HF (aq, 60 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -741.88 ± 0.29 (×3.364) kcal/molGood 1956
0.62279.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.6121.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.52134.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
0.52134.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
0.56805.8 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 8.71 ± 0.9 kcal/molRuscic W1RO
0.46805.7 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 9.08 ± 1.0 kcal/molRuscic CBS-n
0.46805.4 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 8.76 ± 1.0 kcal/molRuscic G4
0.43843.1 C6H6 (g) + 3 H2 (g) → CH2(CH2CH2CH2CH2CH2) (g) ΔrH°(355. K) = -49.84 ± 0.15 (×1.445) kcal/molKistiakowsky 1936
0.32134.11 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5F (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.5 FluorobenzeneC6H5F (g)c1ccc(cc1)F-96.05-111.73± 0.39kJ/mol96.1023 ±
0.0048
462-06-6*0
99.2 Fluorobenzene cation[C6H5F]+ (g)c1ccc(cc1)[F+]791.93776.91± 0.39kJ/mol96.1018 ±
0.0048
34468-25-2*0
46.8 BenzeneC6H6 (g)c1ccccc1100.7183.20± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*0
46.8 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.61976.14± 0.21kJ/mol78.1113 ±
0.0048
34504-50-2*0
46.8 BenzeneC6H6 (cr,l)c1ccccc150.8149.26± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*500
37.0 HexafluorobenzeneC6F6 (g)Fc1c(F)c(F)c(F)c(F)c1F-942.72-947.72± 0.87kJ/mol186.0546 ±
0.0048
392-56-3*0
36.9 Hexafluorobenzene cation[C6F6]+ (g)Fc1c(F)c(F)c(F)c(F)c1[F+]13.539.74± 0.88kJ/mol186.0541 ±
0.0048
34528-23-9*0
36.8 HexafluorobenzeneC6F6 (cr,l)Fc1c(F)c(F)c(F)c(F)c1F-997.33-983.54± 0.87kJ/mol186.0546 ±
0.0048
392-56-3*500
25.2 Phenide[C6H5]- (g)c1cccc[c-]1244.28230.86± 0.38kJ/mol77.1044 ±
0.0048
30922-78-2*0
23.9 Fluorobenzene anion[C6H5F]- (g)c1ccc(cc1)[F-]-15.3-27.1± 1.6kJ/mol96.1029 ±
0.0048
34561-55-2*0

Most Influential reactions involving C6H5F (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2726802.4 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 34.63 ± 0.07 kJ/molBasarova 1991, Boublik 1984
0.1906802.5 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 8.278 ± 0.02 kcal/molScott 1956
0.1646802.1 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 34.68 ± 0.09 kJ/molMajer 1985, Scott 1956
0.1546802.3 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 34.677 ± 0.093 kJ/molThermoData 2004
0.0636803.4 C6H5F (cr,l) → C6H5F (g) ΔrG°(314.158 K) = 4.127 ± 0.145 kJ/molThermoData 2004, 3rd Law
0.0546803.10 C6H5F (cr,l) → C6H5F (g) ΔrG°(296.09 K) = 5.885 ± 0.157 kJ/molYoung 1889, 3rd Law, ThermoData 2004
0.0496803.2 C6H5F (cr,l) → C6H5F (g) ΔrG°(294.195 K) = 6.059 ± 0.164 kJ/molThermoData 2004, 3rd Law
0.0246803.8 C6H5F (cr,l) → C6H5F (g) ΔrG°(334.18 K) = 2.214 ± 0.232 kJ/molScott 1956, 3rd Law, ThermoData 2004
0.0246803.6 C6H5F (cr,l) → C6H5F (g) ΔrG°(334.83 K) = 2.157 ± 0.235 kJ/molDiaz-Pena 1980, 3rd Law, ThermoData 2004
0.0096804.1 C6H5F (cr,l) + 7 O2 (g) → 6 CO2 (g) HF (aq, 60 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -741.88 ± 0.29 (×3.364) kcal/molGood 1956
0.0006803.3 C6H5F (cr,l) → C6H5F (g) ΔrH°(314.158 K) = 35.015 ± 2.693 kJ/molThermoData 2004, 2nd Law
0.0006803.9 C6H5F (cr,l) → C6H5F (g) ΔrH°(296.09 K) = 34.638 ± 3.092 kJ/molYoung 1889, 2nd Law, ThermoData 2004
0.0006803.1 C6H5F (cr,l) → C6H5F (g) ΔrH°(294.195 K) = 35.848 ± 3.362 kJ/molThermoData 2004, 2nd Law
0.0006803.7 C6H5F (cr,l) → C6H5F (g) ΔrH°(334.18 K) = 32.893 ± 3.726 kJ/molScott 1956, 2nd Law, ThermoData 2004
0.0006803.5 C6H5F (cr,l) → C6H5F (g) ΔrH°(334.83 K) = 32.978 ± 3.785 kJ/molDiaz-Pena 1980, 2nd Law, ThermoData 2004


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.