Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Azanylium

Formula: [NH2]+ (g)
CAS RN: 15194-15-7
ATcT ID: 15194-15-7*0
SMILES: [NH2+]
InChI: InChI=1S/H2N/h1H2/q+1
InChIKey: QTLMMXDMXKCANI-UHFFFAOYSA-N
Hills Formula: H2N1+

2D Image:

[NH2+]
Aliases: [NH2]+; Azanylium; Aminylium; Nitrenium; Nitrenium ion; Nitrenium cation; Nitrenium ion (1+); Amidogen cation; Amidogen ion (1+); Amino cation; Amino ion (1+); Amide cation; Amide ion (1+); Amido cation; Amido ion (1+); Aminyl cation; Aminyl ion (1+); Nitrogen dihydride cation; Nitrogen dihydride ion (1+); Dihydronitrogen cation; Dihydronitrogen ion (1+)
Relative Molecular Mass: 16.02207 ± 0.00016

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1266.561264.49± 0.11kJ/mol

3D Image of [NH2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [NH2]+ (g)

The 20 contributors listed below account only for 71.7% of the provenance of ΔfH° of [NH2]+ (g).
A total of 53 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
28.11661.1 NH3 (g) → [NH2]+ (g) H (g) ΔrH°(0 K) = 15.765 ± 0.002 eVSong 2001a, note unc2
7.01661.4 NH3 (g) → [NH2]+ (g) H (g) ΔrH°(0 K) = 15.768 ± 0.004 eVMcCulloh 1976
4.51656.1 NH3 (g) → NH2 (g) H (g) ΔrH°(0 K) = 37115 ± 20 (×2) cm-1Mordaunt 1996a
3.51648.10 NH2 (g) → N (g) + 2 H (g) ΔrH°(0 K) = 713.85 ± 0.56 kJ/molHarding 2008
3.21657.7 NH3 (g) → NH2 (g) H (g) ΔrH°(0 K) = 443.61 ± 0.56 kJ/molHarding 2008
2.21648.8 NH2 (g) → N (g) + 2 H (g) ΔrH°(0 K) = 713.83 ± 0.70 kJ/molHarding 2008
2.11657.5 NH3 (g) → NH2 (g) H (g) ΔrH°(0 K) = 443.65 ± 0.70 kJ/molHarding 2008
2.01648.9 NH2 (g) → N (g) + 2 H (g) ΔrH°(0 K) = 713.82 ± 0.74 kJ/molHarding 2008
1.91648.7 NH2 (g) → N (g) + 2 H (g) ΔrH°(0 K) = 713.95 ± 0.75 kJ/molTajti 2004, est unc
1.81657.6 NH3 (g) → NH2 (g) H (g) ΔrH°(0 K) = 443.59 ± 0.74 kJ/molHarding 2008
1.81657.4 NH3 (g) → NH2 (g) H (g) ΔrH°(0 K) = 443.58 ± 0.75 kJ/molTajti 2004, est unc
1.61636.1 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/molLarson 1923, Vanderzee 1972
1.61680.6 NH2 (g) → NH (g) H (g) ΔrH°(0 K) = 386.09 ± 0.56 kJ/molHarding 2008
1.51647.10 NH2 (g) → N (g) + 2 H (g) ΔrH°(0 K) = 170.65 ± 0.2 kcal/molFeller 2008
1.51648.11 NH2 (g) → N (g) + 2 H (g) ΔrH°(0 K) = 713.48 ± 0.84 kJ/molHarding 2008
1.51648.13 NH2 (g) → N (g) + 2 H (g) ΔrH°(0 K) = 713.49 ± 0.84 kJ/molHarding 2008
1.41657.8 NH3 (g) → NH2 (g) H (g) ΔrH°(0 K) = 443.42 ± 0.84 kJ/molHarding 2008
1.41657.10 NH3 (g) → NH2 (g) H (g) ΔrH°(0 K) = 443.40 ± 0.84 kJ/molHarding 2008
1.11647.11 NH2 (g) → N (g) + 2 H (g) ΔrH°(0 K) = 713.89 ± 1.00 kJ/molDemaison 2003, est unc
1.11647.9 NH2 (g) → N (g) + 2 H (g) ΔrH°(0 K) = 170.52 ± 0.24 kcal/molDixon 2001, note unc2

Top 10 species with enthalpies of formation correlated to the ΔfH° of [NH2]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.3 AmidogenNH2 (g)[NH2]188.92186.03± 0.11kJ/mol16.02262 ±
0.00016
13770-40-6*0
26.8 Azanide[NH2]- (g)[NH2-]114.65111.77± 0.29kJ/mol16.02317 ±
0.00016
17655-31-1*0
22.4 ImidogenNH (g)[NH]358.74358.79± 0.16kJ/mol15.014680 ±
0.000099
13774-92-0*0
22.4 ImidogenNH (g, triplet)[NH]358.74358.79± 0.16kJ/mol15.014680 ±
0.000099
13774-92-0*1
22.4 Imidogen anion[NH]- (g)[NH-]322.62322.67± 0.16kJ/mol15.015229 ±
0.000099
23841-33-0*0
21.0 ImidogenNH (g, singlet)[NH]509.34509.39± 0.17kJ/mol15.014680 ±
0.000099
13774-92-0*2
18.5 AmmoniaNH3 (g)N-38.563-45.556± 0.029kJ/mol17.03056 ±
0.00022
7664-41-7*0
18.5 Azanylium[NH3]+ (g)[NH3+]944.274937.319± 0.029kJ/mol17.03001 ±
0.00022
19496-55-0*0
18.0 Phenide[C6H5]- (g)c1cccc[c-]1244.28230.86± 0.38kJ/mol77.1044 ±
0.0048
30922-78-2*0
15.0 Aminyliumyl[NH]+ (g)[NH+]1659.041659.96± 0.24kJ/mol15.014131 ±
0.000099
19067-62-0*0

Most Influential reactions involving [NH2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9961649.1 NH2 (g) → [NH2]+ (g) ΔrH°(0 K) = 90083.8 ± 1.0 cm-1Willitsch 2006a
0.3031661.1 NH3 (g) → [NH2]+ (g) H (g) ΔrH°(0 K) = 15.765 ± 0.002 eVSong 2001a, note unc2
0.0751661.4 NH3 (g) → [NH2]+ (g) H (g) ΔrH°(0 K) = 15.768 ± 0.004 eVMcCulloh 1976
0.0121878.6 NH2OH (g, trans) → [NH2]+ (g) OH (g) ΔrH°(0 K) = 13.863 ± 0.040 eVRuscic W1RO
0.0031878.3 NH2OH (g, trans) → [NH2]+ (g) OH (g) ΔrH°(0 K) = 13.802 ± 0.073 eVRuscic G4
0.0031878.5 NH2OH (g, trans) → [NH2]+ (g) OH (g) ΔrH°(0 K) = 13.851 ± 0.075 eVRuscic CBS-n
0.0031661.2 NH3 (g) → [NH2]+ (g) H (g) ΔrH°(0 K) = 15.75 ± 0.02 eVQi 1995
0.0021878.2 NH2OH (g, trans) → [NH2]+ (g) OH (g) ΔrH°(0 K) = 13.767 ± 0.093 eVRuscic G3X
0.0021878.4 NH2OH (g, trans) → [NH2]+ (g) OH (g) ΔrH°(0 K) = 13.907 ± 0.099 eVRuscic CBS-n
0.0011878.1 NH2OH (g, trans) → [NH2]+ (g) OH (g) ΔrH°(0 K) = 13.98 ± 0.03 (×4.177) eVKutina 1982
0.0001661.3 NH3 (g) → [NH2]+ (g) H (g) ΔrH°(0 K) = 15.73 ± 0.02 (×1.795) eVDibeler 1966
0.0001878.7 NH2OH (g, trans) → [NH2]+ (g) OH (g) ΔrH°(0 K) = 13.91 ± 0.15 eVGonzalez 1998, est unc
0.0001661.5 NH3 (g) → [NH2]+ (g) H (g) ΔrH°(0 K) = 15.76 ± 0.05 eVLocht 1988
0.0001653.8 [NH2]+ (g) → N (g) + 2 H (g) ΔrH°(0 K) = -86.81 ± 1.50 kcal/molRuscic W1RO
0.0001653.4 [NH2]+ (g) → N (g) + 2 H (g) ΔrH°(0 K) = -86.59 ± 1.60 kcal/molRuscic G4
0.0001653.7 [NH2]+ (g) → N (g) + 2 H (g) ΔrH°(0 K) = -87.32 ± 1.60 kcal/molRuscic CBS-n
0.0001653.3 [NH2]+ (g) → N (g) + 2 H (g) ΔrH°(0 K) = -85.68 ± 1.72 kcal/molRuscic G3X
0.0001653.6 [NH2]+ (g) → N (g) + 2 H (g) ΔrH°(0 K) = -87.57 ± 2.16 kcal/molRuscic CBS-n
0.0001650.12 NH2 (g) → [NH2]+ (g) ΔrH°(0 K) = 90041 ± 100 cm-1Willitsch 2006a
0.0001650.11 NH2 (g) → [NH2]+ (g) ΔrH°(0 K) = 11.175 ± 0.020 eVDixon 2001, note unc3


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.