Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3] This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.
|
Hydrogen peroxide |
Formula: HOOH (g) |
CAS RN: 7722-84-1 |
ATcT ID: 7722-84-1*0 |
SMILES: OO |
InChI: InChI=1S/H2O2/c1-2/h1-2H |
InChIKey: MHAJPDPJQMAIIY-UHFFFAOYSA-N |
Hills Formula: H2O2 |
2D Image: |
|
Aliases: Hydrogen peroxide; Dioxidane; Dihydrogen peroxide; Hydrogen dioxide; Dihydrogen dioxide; Albone; Oxydol; Perhydrol; Superoxol; HOOH; H2O2 |
Relative Molecular Mass: 34.01468 ± 0.00062 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-129.417 | -135.403 | ± 0.058 | kJ/mol |
|
3D Image of HOOH (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HOOH (g)The 20 contributors listed below account only for 76.2% of the provenance of ΔfH° of HOOH (g). A total of 132 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 37.2 | 240.1 | HOOH (g) → 2 OH (g)  | ΔrH°(0 K) = 17051.8 ± 3.4 cm-1 | Luo 1992 | 16.0 | 121.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 4.7 | 2277.7 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/mol | Schley 2010 | 4.4 | 2279.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 1.8 | 236.3 | HOOH (cr,l) → H2O (cr,l) + 1/2 O2 (g)  | ΔrH°(293.15 K) = -23.48 ± 0.03 (×2.229) kcal/mol | Roth 1930, est unc | 1.3 | 236.4 | HOOH (cr,l) → H2O (cr,l) + 1/2 O2 (g)  | ΔrH°(293.15 K) = -23.47 ± 0.02 (×3.83) kcal/mol | Matheson 1929, est unc | 1.1 | 111.11 | H2O (g) → O (g) + 2 H (g)  | ΔrH°(0 K) = 917.80 ± 0.15 kJ/mol | Thorpe 2021 | 1.0 | 153.1 | OH (g) → [OH]+ (g)  | ΔrH°(0 K) = 104989 ± 5 (×2.278) cm-1 | Wiedmann 1992, note unc | 1.0 | 221.4 | HOOH (g) → 2 H (g) + 2 O (g)  | ΔrH°(0 K) = 1054.84 ± 0.56 kJ/mol | Harding 2008 | 0.9 | 163.6 | H2O (g) → [OH]+ (g) + H (g)  | ΔrH°(0 K) = 18.1183 ± 0.0015 (×1.022) eV | Bodi 2014 | 0.7 | 148.1 | OH (g) → O (g) + H (g)  | ΔrH°(0 K) = 35580 ± 15 cm-1 | Sun 2020 | 0.7 | 1702.1 | N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq)  | ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/mol | Vanderzee 1972c | 0.7 | 236.1 | HOOH (cr,l) → H2O (cr,l) + 1/2 O2 (g)  | ΔrH°(300.05 K) = -23.44 ± 0.02 (×5.301) kcal/mol | Giguere 1955 | 0.6 | 221.2 | HOOH (g) → 2 H (g) + 2 O (g)  | ΔrH°(0 K) = 1055.04 ± 0.70 kJ/mol | Harding 2008 | 0.6 | 2277.4 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/mol | Dale 2002 | 0.6 | 165.1 | [OH]- (g) → O- (g) + H (g)  | ΔrH°(0 K) = 4.7796 ± 0.0010 (×2.089) eV | Martin 2001, est unc | 0.5 | 221.3 | HOOH (g) → 2 H (g) + 2 O (g)  | ΔrH°(0 K) = 1054.64 ± 0.74 kJ/mol | Harding 2008 | 0.5 | 221.1 | HOOH (g) → 2 H (g) + 2 O (g)  | ΔrH°(0 K) = 1054.81 ± 0.75 kJ/mol | Tajti 2004, est unc | 0.5 | 163.7 | H2O (g) → [OH]+ (g) + H (g)  | ΔrH°(0 K) = 18.1190 ± 0.002 eV | Bodi 2014 | 0.5 | 2172.11 | CO (g) → C (g) + O (g)  | ΔrH°(0 K) = 1071.92 ± 0.10 (×1.189) kJ/mol | Thorpe 2021 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HOOH (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Hydrogen peroxide | HOOH (g, para) | | -129.417 | -135.403 | ± 0.058 | kJ/mol | 34.01468 ± 0.00062 | 7722-84-1*2 | 100.0 | Hydrogen peroxide | HOOH (g, ortho) | | -129.397 | -135.403 | ± 0.058 | kJ/mol | 34.01468 ± 0.00062 | 7722-84-1*1 | 73.0 | Hydroxyl | OH (g) | | 37.279 | 37.519 | ± 0.023 | kJ/mol | 17.00734 ± 0.00031 | 3352-57-6*0 | 73.0 | Hydroxyde | [OH]- (g) | | -139.063 | -139.029 | ± 0.023 | kJ/mol | 17.00789 ± 0.00031 | 14280-30-9*0 | 72.9 | Water | H2O (g, ortho) | | -238.617 | -241.805 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*1 | 72.9 | Water | H2O (g, para) | | -238.902 | -241.805 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*2 | 72.9 | Water | H2O (g) | | -238.902 | -241.805 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*0 | 72.9 | Water | H2O (l, eq.press.) | | | -285.801 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*589 | 72.9 | Water | H2O (l) | | | -285.799 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*590 | 72.9 | Water | H2O (cr, l, eq.press.) | | -286.273 | -285.801 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*499 |
|
Most Influential reactions involving HOOH (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 228.1 | HOOH (g, para) → HOOH (g)  | ΔrH°(0 K) = 0 ± 0 cm-1 | triv, Hougen 1984 | 0.917 | 240.1 | HOOH (g) → 2 OH (g)  | ΔrH°(0 K) = 17051.8 ± 3.4 cm-1 | Luo 1992 | 0.556 | 237.9 | HOOH (cr,l) → HOOH (g)  | ΔrH°(298.15 K) = 51.925 ± 0.073 kJ/mol | Scatchard 1952, 3rd Law, apud Gurvich TPIS | 0.420 | 222.4 | HOOH (g) → [HOOH]+ (g, trans)  | ΔrH°(0 K) = 10.642 ± 0.008 eV | Schio 2016, Changala 2017 | 0.405 | 2073.6 | HOONO (g, trans, perp) + H2O (g) → HONO (g, trans) + HOOH (g)  | ΔrH°(0 K) = 6.93 ± 0.15 kcal/mol | McGrath 2005 | 0.252 | 1874.1 | NH2OH (g, trans) + H2O (g) → HOOH (g) + NH3 (g)  | ΔrH°(0 K) = 24.9 ± 0.2 kcal/mol | Feller 2003, est unc | 0.247 | 423.6 | (HOO)2 (g, triplet) → HOOH (g) + O2 (g)  | ΔrH°(0 K) = -121.15 ± 1.0 kJ/mol | Sprague 2015, note unc2 | 0.245 | 1016.7 | ClOOCl (g) + 2 HOCl (g) → HOOH (g) + 2 ClOCl (g)  | ΔrH°(0 K) = 10.44 ± 0.30 kcal/mol | Karton 2009c | 0.244 | 1054.4 | 2 HOOCl (g) → HOOH (g) + ClOOCl (g)  | ΔrH°(0 K) = -0.35 ± 0.9 kcal/mol | Ruscic W1RO | 0.198 | 1054.2 | 2 HOOCl (g) → HOOH (g) + ClOOCl (g)  | ΔrH°(0 K) = -0.55 ± 1.0 kcal/mol | Ruscic G4 | 0.189 | 414.6 | HOOOOH (g, C1) → HOOH (g) + O2 (g)  | ΔrH°(0 K) = -96.25 ± 1.0 kJ/mol | Sprague 2015, note unc2 | 0.186 | 223.9 | HOOH (g) → [HOOH]+ (g, trans)  | ΔrH°(0 K) = 10.638 ± 0.012 eV | Changala 2017, est unc | 0.186 | 222.6 | HOOH (g) → [HOOH]+ (g, trans)  | ΔrH°(0 K) = 10.638 ± 0.012 eV | Changala 2017, Litorja 1998a | 0.163 | 1054.1 | 2 HOOCl (g) → HOOH (g) + ClOOCl (g)  | ΔrH°(0 K) = -0.72 ± 1.1 kcal/mol | Ruscic G3X | 0.154 | 706.9 | FOOF (g) + 2 OH (g) → HOOH (g) + 2 FO (g)  | ΔrH°(0 K) = -4.55 ± 0.25 kcal/mol | Karton 2009c | 0.153 | 416.7 | HOOOOH (g, C1) + HOOH (g) → 2 HOOOH (g, trans)  | ΔrH°(0 K) = -0.48 ± 2.0 kJ/mol | Klippenstein 2017 | 0.148 | 707.9 | FOOF (g) + H2O (g) → HOOH (g) + FOF (g)  | ΔrH°(0 K) = 23.92 ± 0.25 kcal/mol | Karton 2009c | 0.141 | 1015.7 | ClOOCl (g) + H2O (g) → ClOCl (g) + HOOH (g)  | ΔrH°(0 K) = 13.27 ± 0.30 kcal/mol | Karton 2009c | 0.140 | 416.6 | HOOOOH (g, C1) + HOOH (g) → 2 HOOOH (g, trans)  | ΔrH°(0 K) = 0.08 ± 0.50 kcal/mol | Denis 2009, Denis 2009, est unc | 0.138 | 1016.6 | ClOOCl (g) + 2 HOCl (g) → HOOH (g) + 2 ClOCl (g)  | ΔrH°(0 K) = 10.43 ± 0.40 kcal/mol | Karton 2009c |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997230]
|
4
|
|
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022)
[DOI: 10.1021/jacs.2c07740]
|
5
|
|
B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
8
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|