Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3] This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.
|
Ammonium chloride |
Formula: (NH4)Cl (cr) |
CAS RN: 12125-02-9 |
ATcT ID: 12125-02-9*510 |
SMILES: [NH4+].[Cl-] |
InChI: InChI=1S/ClH.H3N/h1H;1H3 |
InChIKey: NLXLAEXVIDQMFP-UHFFFAOYSA-N |
Hills Formula: Cl1H4N1 |
2D Image: |
|
Aliases: (NH4)Cl; Ammonium chloride; Salmiac; Ammonium muriate; Amchlor; Ammoneric; Darammon; Salammonite; Ammonium uriate; Katapone VV-328; Quaternary ammonium chloride |
Relative Molecular Mass: 53.49120 ± 0.00095 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-311.553 | -314.715 | ± 0.062 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of (NH4)Cl (cr)The 20 contributors listed below account only for 87.2% of the provenance of ΔfH° of (NH4)Cl (cr). A total of 25 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 25.7 | 1697.1 | NH3 (g) → NH3 (aq, undissoc)  | ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/mol | Vanderzee 1972 | 9.1 | 1636.1 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/mol | Larson 1923, Vanderzee 1972 | 8.6 | 1703.5 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrG°(298.15 K) = -7.092 ± 0.020 kJ/mol | CODATA Key Vals | 6.4 | 1697.2 | NH3 (g) → NH3 (aq, undissoc)  | ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/mol | Stavaley 1971, Vanderzee 1972, as quoted by CODATA Key Vals | 6.4 | 1697.7 | NH3 (g) → NH3 (aq, undissoc)  | ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/mol | Staveley 1971, Vanderzee 1972 | 4.6 | 1635.5 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.875 ± 0.014 kcal/mol | Schulz 1966, Vanderzee 1972 | 3.4 | 1702.1 | N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq)  | ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/mol | Vanderzee 1972c | 3.3 | 1699.1 | [NH4]+ (aq) → NH3 (aq, undissoc) + H+ (aq)  | ΔrG°(298.15 K) = 52.771 ± 0.020 kJ/mol | Bates 1950, Bates 1950, Bates 1949, Bates 1943, Bates 1946 | 2.8 | 797.1 | HCl (g) → HCl (aq)  | ΔrH°(298.15 K) = -17.884 ± 0.010 kcal/mol | Gunn 1963, Gunn 1964, as quoted by CODATA Key Vals, Vanderzee 1963, NBS Tables 1989 | 2.3 | 1697.3 | NH3 (g) → NH3 (aq, undissoc)  | ΔrH°(298.15 K) = -8.442 ± 0.050 kcal/mol | Thomsen 1873, Vanderzee 1972 | 2.0 | 797.5 | HCl (g) → HCl (aq)  | ΔrG°(298.15 K) = -36.015 ± 0.050 kJ/mol | Bates 1919, as quoted by CODATA Key Vals | 2.0 | 797.4 | HCl (g) → HCl (aq)  | ΔrG°(298.15 K) = -36.009 ± 0.050 kJ/mol | Aston 1955, as quoted by CODATA Key Vals | 1.9 | 799.1 | HCl (g) → HCl (aq, 2439 H2O)  | ΔrH°(298.15 K) = -17.810 ± 0.012 kcal/mol | Vanderzee 1963 | 1.8 | 1635.4 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.910 ± 0.015 (×1.477) kcal/mol | Larson 1924, Vanderzee 1972 | 1.4 | 1701.1 | NH3 (g) + HON(O)O (aq) → [NH4]+ (aq) + [ON(O)O]- (aq)  | ΔrH°(298.15 K) = -87.23 ± 0.25 (×1.164) kJ/mol | Becker 1934, Vanderzee 1972a, as quoted by CODATA Key Vals | 1.3 | 1693.6 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.20 ± 0.06 (×1.682) kcal/mol | Braune 1928, JANAF 3, 3rd Law | 0.9 | 1696.3 | (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l)  | ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/mol | Becker 1934 | 0.8 | 1702.3 | N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq)  | ΔrH°(298.15 K) = 141.226 ± 0.239 kcal/mol | Becker 1934, as quoted by CODATA Key Vals | 0.7 | 1693.7 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.43 ± 0.09 (×1.445) kcal/mol | Rodebush 1929, JANAF 3, 2nd Law | 0.7 | 797.3 | HCl (g) → HCl (aq)  | ΔrG°(298.15 K) = -35.960 ± 0.080 kJ/mol | Haase 1963, as quoted by CODATA Key Vals |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of (NH4)Cl (cr) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 87.9 | Ammonium | [NH4]+ (aq) | | | -133.074 | ± 0.056 | kJ/mol | 18.03795 ± 0.00029 | 14798-03-9*800 | 87.7 | Ammonia | NH3 (aq) | | | -77.031 | ± 0.056 | kJ/mol | 17.03056 ± 0.00022 | 7664-41-7*800 | 83.8 | Ammonia | NH3 (aq, undissoc) | | | -80.882 | ± 0.053 | kJ/mol | 17.03056 ± 0.00022 | 7664-41-7*1000 | 81.8 | Ammonium hydroxide | NH4OH (aq) | | | -362.830 | ± 0.061 | kJ/mol | 35.04584 ± 0.00047 | 1336-21-6*800 | 78.0 | Ammonium hydroxide | NH4OH (aq, undissoc) | | | -366.682 | ± 0.060 | kJ/mol | 35.04584 ± 0.00047 | 1336-21-6*1000 | 43.8 | Azanylium | [NH3]+ (g) | | 944.274 | 937.319 | ± 0.029 | kJ/mol | 17.03001 ± 0.00022 | 19496-55-0*0 | 43.8 | Ammonia | NH3 (g) | | -38.563 | -45.556 | ± 0.029 | kJ/mol | 17.03056 ± 0.00022 | 7664-41-7*0 | 34.3 | Chloride | Cl- (aq) | | | -166.989 | ± 0.023 | kJ/mol | 35.45325 ± 0.00090 | 16887-00-6*800 | 34.3 | Hydrogen chloride | HCl (aq) | | | -166.989 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*800 | 33.8 | Hydrogen chloride | HCl (aq, 100 H2O) | | | -165.756 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*828 |
|
Most Influential reactions involving (NH4)Cl (cr)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.951 | 1703.5 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrG°(298.15 K) = -7.092 ± 0.020 kJ/mol | CODATA Key Vals | 0.022 | 1703.4 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrH°(298.15 K) = 3.533 ± 0.015 (×2.089) kcal/mol | Parker 1965, as quoted by CODATA Key Vals | 0.017 | 1693.6 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.20 ± 0.06 (×1.682) kcal/mol | Braune 1928, JANAF 3, 3rd Law | 0.013 | 1703.1 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrH°(298.15 K) = 3.542 ± 0.005 (×8.175) kcal/mol | Vanderzee 1972a | 0.010 | 1693.7 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.43 ± 0.09 (×1.445) kcal/mol | Rodebush 1929, JANAF 3, 2nd Law | 0.005 | 1694.7 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrG°(556.8 K) = 21.057 ± 0.618 (×1.215) kJ/mol | Markowitz 1962, 3rd Law | 0.005 | 1694.4 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(335 K) = 175.825 ± 0.759 kJ/mol | Wagner 1961, 2nd Law | 0.004 | 1693.2 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrG°(587.4 K) = 3.132 ± 0.028 (×6.874) kcal/mol | Smith 1914, 3rd Law | 0.003 | 1693.3 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.16 ± 0.22 kcal/mol | Smits 1928, JANAF 3, 2nd Law | 0.003 | 1693.4 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.14 ± 0.22 kcal/mol | Smits 1928, JANAF 3, 3rd Law | 0.003 | 1703.3 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrH°(298.15 K) = 14.98 ± 0.20 (×1.646) kJ/mol | Makarov 1967, as quoted by CODATA Key Vals | 0.003 | 1693.8 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.08 ± 0.09 (×2.484) kcal/mol | Rodebush 1929, JANAF 3, 3rd Law | 0.003 | 1703.2 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrH°(298.15 K) = 14.979 ± 0.080 (×4.177) kJ/mol | Tsvetkov 1969, as quoted by CODATA Key Vals | 0.002 | 1693.5 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.02 ± 0.06 (×4.757) kcal/mol | Braune 1928, JANAF 3, 2nd Law | 0.000 | 1693.1 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(587.4 K) = 39.54 ± 0.58 kcal/mol | Smith 1914, 2nd Law | 0.000 | 1694.8 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(556.8 K) = 162.04 ± 4.28 kJ/mol | Markowitz 1962, 2nd Law | 0.000 | 1693.9 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrG°(603 K) = 9.52 ± 5 kJ/mol | Johnson 1909, 3rd Law, est unc | 0.000 | 1693.10 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(603 K) = 158.7 ± 10 kJ/mol | Johnson 1909, 2nd Law, est unc | 0.000 | 1694.9 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(798 K) = 40.28 ± 0.5 (×5.076) kcal/mol | Luft 1955, JANAF 3, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997230]
|
4
|
|
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022)
[DOI: 10.1021/jacs.2c07740]
|
5
|
|
B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
8
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|