Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.

Ammonium hydroxide

Formula: NH4OH (aq)
CAS RN: 1336-21-6
ATcT ID: 1336-21-6*800
SMILES: [NH4+].[OH-]
InChI: InChI=1S/H3N.H2O/h1H3;1H2
InChIKey: VHUUQVKOLVNVRT-UHFFFAOYSA-N
SMILES: [NH4][OH]
InChI: InChI=1S/H5NO/c1-2/h2H,1H4
InChIKey: AVWWWZOEBBIQQX-UHFFFAOYSA-N
Hills Formula: H5N1O1

2D Image:

[NH4+].[OH-]
Aliases: NH4OH; Ammonium hydroxide; Ammonia monohydrate
Relative Molecular Mass: 35.04584 ± 0.00047

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-362.830± 0.061kJ/mol

Top contributors to the provenance of ΔfH° of NH4OH (aq)

The 20 contributors listed below account only for 84.3% of the provenance of ΔfH° of NH4OH (aq).
A total of 42 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
28.81697.1 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/molVanderzee 1972
10.21636.1 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/molLarson 1923, Vanderzee 1972
7.21697.2 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/molStavaley 1971, Vanderzee 1972, as quoted by CODATA Key Vals
7.21697.7 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/molStaveley 1971, Vanderzee 1972
5.3121.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
5.21635.5 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.875 ± 0.014 kcal/molSchulz 1966, Vanderzee 1972
3.71699.1 [NH4]+ (aq) → NH3 (aq, undissoc) H+ (aq) ΔrG°(298.15 K) = 52.771 ± 0.020 kJ/molBates 1950, Bates 1950, Bates 1949, Bates 1943, Bates 1946
2.61697.3 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.442 ± 0.050 kcal/molThomsen 1873, Vanderzee 1972
2.21702.1 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/molVanderzee 1972c
2.01635.4 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.910 ± 0.015 (×1.477) kcal/molLarson 1924, Vanderzee 1972
1.61701.1 NH3 (g) HON(O)O (aq) → [NH4]+ (aq) [ON(O)O]- (aq) ΔrH°(298.15 K) = -87.23 ± 0.25 (×1.164) kJ/molBecker 1934, Vanderzee 1972a, as quoted by CODATA Key Vals
1.52277.7 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/molSchley 2010
1.42279.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.91700.3 NH3 (aq, undissoc) H2O (cr,l) → [NH4]+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 0.920 ± 0.010 kcal/molVanderzee 1972a
0.71693.6 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(298.15 K) = 42.20 ± 0.06 (×1.682) kcal/molBraune 1928, JANAF 3, 3rd Law
0.71636.8 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrG°(635 K) = 20.084 ± 0.157 kJ/molSchulz 1966, 3rd Law
0.61697.4 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.475 ± 0.100 kcal/molBaud 1909, Vanderzee 1972
0.51696.3 (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l) ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/molBecker 1934
0.51699.5 [NH4]+ (aq) → NH3 (aq, undissoc) H+ (aq) ΔrG°(298.15 K) = 52.732 ± 0.050 kJ/molEverett 1954, Olofsson 1975a, as quoted by CODATA Key Vals
0.51702.3 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.226 ± 0.239 kcal/molBecker 1934, as quoted by CODATA Key Vals

Top 10 species with enthalpies of formation correlated to the ΔfH° of NH4OH (aq)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
96.0 Ammonium hydroxideNH4OH (aq, undissoc)[NH4+].[OH-]-366.682± 0.060kJ/mol35.04584 ±
0.00047
1336-21-6*1000
93.1 AmmoniaNH3 (aq)N-77.031± 0.056kJ/mol17.03056 ±
0.00022
7664-41-7*800
92.9 Ammonium[NH4]+ (aq)[NH4+]-133.074± 0.056kJ/mol18.03795 ±
0.00029
14798-03-9*800
88.7 AmmoniaNH3 (aq, undissoc)N-80.882± 0.053kJ/mol17.03056 ±
0.00022
7664-41-7*1000
81.8 Ammonium chloride(NH4)Cl (cr)[NH4+].[Cl-]-311.553-314.715± 0.062kJ/mol53.49120 ±
0.00095
12125-02-9*510
46.3 Azanylium[NH3]+ (g)[NH3+]944.274937.319± 0.029kJ/mol17.03001 ±
0.00022
19496-55-0*0
46.3 AmmoniaNH3 (g)N-38.563-45.556± 0.029kJ/mol17.03056 ±
0.00022
7664-41-7*0
42.3 Hydroxyde[OH]- (aq)[OH-]-229.756± 0.023kJ/mol17.00789 ±
0.00031
14280-30-9*800
42.0 WaterH2O (l)O-285.799± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
42.0 WaterH2O (l, eq.press.)O-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589

Most Influential reactions involving NH4OH (aq)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0001709.1 NH4OH (aq) → [NH4]+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 0 ± 0 cm-1triv
1.0001710.1 NH4OH (aq, 1000 H2O) → NH4OH (aq) ΔrH°(298.15 K) = 3.541 ± 0.40 kJ/molNBS Tables 1989, NBS TN270, Parker 1965
1.0001754.1 NH3 (aq) H2O (cr,l) → NH4OH (aq) ΔrH°(298.15 K) = 0 ± 0 cm-1triv


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997230]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.