Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Nitrilomethyl

Formula: CN (g)
CAS RN: 2074-87-5
ATcT ID: 2074-87-5*0
SMILES: [C]#N
InChI: InChI=1S/CN/c1-2
InChIKey: JEVCWSUVFOYBFI-UHFFFAOYSA-N
Hills Formula: C1N1

2D Image:

[C]#N
Aliases: CN; Nitrilomethyl; Cyano radical; Cyano; Cyanide radical; Monocyanogen; Cyanogen radical; Cyanogen; Carbon mononitride; Carbon nitride; Carbon nitride radical; Nitrile; Carbonitrile; 15808-32-9; 211750-61-7
Relative Molecular Mass: 26.01744 ± 0.00080

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
436.73440.02± 0.14kJ/mol

3D Image of CN (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CN (g)

The 20 contributors listed below account only for 43.6% of the provenance of ΔfH° of CN (g).
A total of 189 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
5.22660.1 [CN]- (g) → CN (g) ΔrH°(0 K) = 3.862 ± 0.004 eVBradforth 1993
4.52735.12 HCN (g) → CN (g) H (g) ΔrH°(0 K) = 43729 ± 35 cm-1Makhnev 2018
4.52657.4 CN (g) → C (g) N (g) ΔrH°(0 K) = 744.81 ± 0.56 kJ/molHarding 2008
3.62656.8 CN (g) → C (g) N (g) ΔrH°(0 K) = 178.18 ± 0.15 kcal/molKarton 2008
2.82657.2 CN (g) → C (g) N (g) ΔrH°(0 K) = 745.90 ± 0.70 kJ/molHarding 2008
2.32661.6 [CN]- (g) → CN (g) ΔrH°(0 K) = 3.867 ± 0.006 eVFeller 2016, note unc2
2.02655.11 CN (g) → C (g) N (g) ΔrH°(0 K) = 178.20 ± 0.20 kcal/molFeller 2014
2.02657.5 CN (g) → C (g) N (g) ΔrH°(0 K) = 745.40 ± 0.84 kJ/molHarding 2008
1.62736.11 HCN (g) → CN (g) H (g) ΔrH°(0 K) = 523.78 ± 0.56 (×1.242) kJ/molHarding 2008
1.62736.9 HCN (g) → CN (g) H (g) ΔrH°(0 K) = 522.84 ± 0.70 kJ/molHarding 2008
1.62657.3 CN (g) → C (g) N (g) ΔrH°(0 K) = 744.33 ± 0.74 (×1.269) kJ/molHarding 2008
1.52657.7 CN (g) → C (g) N (g) ΔrH°(0 K) = 744.30 ± 0.84 (×1.139) kJ/molHarding 2008
1.42666.7 CN (g) HCCH (g) → CCH (g) HCN (g) ΔrH°(0 K) = 6.74 ± 0.15 kcal/molMartin 2006, Karton 2006
1.32736.10 HCN (g) → CN (g) H (g) ΔrH°(0 K) = 523.84 ± 0.74 (×1.022) kJ/molHarding 2008
1.32667.1 CN (g) → N2 (g) C2 (g) ΔrH°(0 K) = -12.78 ± 0.50 kcal/molFeller 2014
1.22656.7 CN (g) → C (g) N (g) ΔrH°(0 K) = 178.22 ± 0.25 kcal/molMartin 2006
1.12666.9 CN (g) HCCH (g) → CCH (g) HCN (g) ΔrH°(0 K) = 28.10 ± 0.70 kJ/molHarding 2008
1.12735.2 HCN (g) → CN (g) H (g) ΔrH°(0 K) = 43710 ± 70 cm-1Cook 2000
1.12736.12 HCN (g) → CN (g) H (g) ΔrH°(0 K) = 522.69 ± 0.84 kJ/molHarding 2008
1.12736.14 HCN (g) → CN (g) H (g) ΔrH°(0 K) = 523.62 ± 0.84 kJ/molHarding 2008

Top 10 species with enthalpies of formation correlated to the ΔfH° of CN (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
49.1 Hydrogen cyanideHCN (g)C#N129.678129.294± 0.089kJ/mol27.02538 ±
0.00081
74-90-8*0
49.1 Hydrogen cyanide anion[HCN]- (g)[CH-]#N129.527129.048± 0.089kJ/mol27.02593 ±
0.00081
12334-27-9*0
47.8 Cyanide[CN]- (g)[C-]#N63.97467.260± 0.093kJ/mol26.01799 ±
0.00080
57-12-5*0
29.6 EthynylCCH (g)C#[C]563.76567.88± 0.15kJ/mol25.0293 ±
0.0016
2122-48-7*0
28.1 CyanogenNCCN (g)N#CC#N308.17310.12± 0.41kJ/mol52.0349 ±
0.0016
460-19-5*0
27.8 CyanogenNCCN (cr,l)N#CC#N273.93289.18± 0.42kJ/mol52.0349 ±
0.0016
460-19-5*500
27.4 Cyanogen cation[NCCN]+ (g)N#C[C+]#N1598.241600.45± 0.42kJ/mol52.0343 ±
0.0016
37354-81-7*0
27.0 Nitrilomethylium[CN]+ (g)[C+]#N1783.131786.61± 0.48kJ/mol26.01689 ±
0.00080
12539-57-0*0
26.9 CarbonC (g)[C]711.404716.889± 0.044kJ/mol12.01070 ±
0.00080
7440-44-0*0
26.9 CarbonC (g, triplet)[C]711.404716.889± 0.044kJ/mol12.01070 ±
0.00080
7440-44-0*1

Most Influential reactions involving CN (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6922812.1 [ICN]- (g) → I (g, 2P3/2) CN (g) ΔrH°(0 K) = 4.69 ± 0.10 eVMiller 2012, est unc
0.4952659.10 CN (g) → [CN]+ (g) ΔrH°(0 K) = 321.757 ± 0.157 kcal/molFeller 2017a
0.4692659.1 CN (g) → [CN]+ (g) ΔrH°(0 K) = 13.956 ± 0.007 eVGans 2017a
0.4522808.2 ICN (g) → I (g) CN (g) ΔrH°(0 K) = 26980 ± 200 cm-1Costen 1999, note unc2
0.2227442.1 CN (g) SiH4 (g) → HCN (g) SiH3 (g) ΔrH°(0 K) = -34.60 ± 0.30 kcal/molBurke 2021
0.1372767.12 ClCN (g) → Cl (g) CN (g) ΔrH°(0 K) = 100.55 ± 0.30 kcal/molMartin 2006, Karton 2006
0.0962660.1 [CN]- (g) → CN (g) ΔrH°(0 K) = 3.862 ± 0.004 eVBradforth 1993
0.0827323.6 NCNNN (g) → CN (g) NNN (g) ΔrH°(0 K) = 4.011 ± 0.065 eVRuscic W1RO
0.0792735.12 HCN (g) → CN (g) H (g) ΔrH°(0 K) = 43729 ± 35 cm-1Makhnev 2018
0.0772767.11 ClCN (g) → Cl (g) CN (g) ΔrH°(0 K) = 100.37 ± 0.40 kcal/molMartin 2006, Karton 2006
0.0742789.1 BrCN (g) → Br (g) CN (g) ΔrH°(0 K) = 3.77 ± 0.05 eVDavis 1968
0.0727323.3 NCNNN (g) → CN (g) NNN (g) ΔrH°(0 K) = 4.015 ± 0.069 eVRuscic G4
0.0727323.5 NCNNN (g) → CN (g) NNN (g) ΔrH°(0 K) = 3.992 ± 0.069 eVRuscic CBS-n
0.0722808.1 ICN (g) → I (g) CN (g) ΔrH°(0 K) = 26580 ± 500 cm-1Nadler 1985
0.0632727.4 NCCN (g) → 2 CN (g) ΔrH°(0 K) = 134.96 ± 0.40 kcal/molMartin 2006
0.0632727.3 NCCN (g) → 2 CN (g) ΔrH°(0 K) = 134.76 ± 0.40 kcal/molMartin 2006
0.0617323.2 NCNNN (g) → CN (g) NNN (g) ΔrH°(0 K) = 3.998 ± 0.075 eVRuscic G3X
0.0562726.1 NCCN (g) → 2 CN (g) ΔrH°(0 K) = 47108 ± 50 (×2.954) cm-1Huang 1992
0.0545175.3 NCN (g) H (g) → NH (g) CN (g) ΔrH°(0 K) = 128.49 ± 2.0 kJ/molKlippenstein 2017
0.0522657.4 CN (g) → C (g) N (g) ΔrH°(0 K) = 744.81 ± 0.56 kJ/molHarding 2008


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.