Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3] This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]
|
Sulfanyl |
Formula: SH (g) |
CAS RN: 13940-21-1 |
ATcT ID: 13940-21-1*0 |
SMILES: [SH] |
InChI: InChI=1S/HS/h1H |
InChIKey: PXQLVRUNWNTZOS-UHFFFAOYSA-N |
Hills Formula: H1S1 |
2D Image: |
|
Aliases: SH; Sulfanyl; Mercapto; Mercapto radical; Thiohydroxyl; Sulfhydryl; Sulfide radical; Hydrogen monosulfide; Monohydrogen sulfide; Monohydrogen monosulfide; Hydrogen sulfide; Sulfur monohydride; Sulfur hydride; Hydrosulfur |
Relative Molecular Mass: 33.0739 ± 0.0060 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
142.93 | 143.39 | ± 0.20 | kJ/mol |
|
3D Image of SH (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of SH (g)The 20 contributors listed below account only for 84.6% of the provenance of ΔfH° of SH (g). A total of 27 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 16.0 | 8177.1 | 999 H2S (g) + 999 O2 (g) → 728 OSO (g) + 272 S (cr,l) + 999 H2O (cr,l)  | ΔrH°(298.15 K) = -115042 ± 60 kcal/mol | Kapustinskii 1958 | 14.3 | 8183.1 | SH (g) → H (g) + S (g)  | ΔrH°(0 K) = 29245 ± 25 cm-1 | Zhou 2005 | 13.4 | 8101.1 | S (cr,l) + O2 (g) → OSO (g)  | ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/mol | Eckman 1929, note SO2 | 7.3 | 8205.1 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/mol | Good 1960, CODATA Key Vals | 4.0 | 8205.2 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.92 ± 0.07 (×1.164) kcal/mol | Mansson 1963, CODATA Key Vals | 3.5 | 8186.3 | [SH]- (g) → SH (g)  | ΔrH°(0 K) = 2.317 ± 0.002 eV | Breyer 1981 | 3.5 | 8186.2 | [SH]- (g) → SH (g)  | ΔrH°(0 K) = 2.317 ± 0.002 eV | Kitsopoulos 1989, Shiell 2000a | 2.8 | 8086.2 | 2 S (cr,l) → S2 (g)  | ΔrG°(570 K) = 9.483 ± 0.138 (×1.682) kcal/mol | Drowart 1968, Detry 1967, 3rd Law | 1.9 | 8204.1 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O)  | ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.297) kcal/mol | McCullough 1953, CODATA Key Vals | 1.9 | 8094.11 | S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g)  | ΔrH°(0 K) = 75.51 ± 0.25 kcal/mol | Feller 2008 | 1.9 | 8094.10 | S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g)  | ΔrH°(0 K) = 75.40 ± 0.25 kcal/mol | Karton 2006, Karton 2011 | 1.8 | 8113.1 | SO (g) → S (g) + O (g)  | ΔrH°(0 K) = 43275 ± 5 cm-1 | Clerbaux 1994 | 1.8 | 8184.12 | SH (g) → H (g) + S (g)  | ΔrH°(0 K) = 83.69 ± 0.20 kcal/mol | Feller 2008 | 1.8 | 8086.4 | 2 S (cr,l) → S2 (g)  | ΔrG°(600 K) = 8.57 ± 0.29 kcal/mol | Braune 1951, West 1929, Gurvich TPIS, 3rd Law | 1.5 | 8186.5 | [SH]- (g) → SH (g)  | ΔrH°(0 K) = 2.314 ± 0.003 eV | Janousek 1981 | 1.4 | 8179.1 | H2S (g) + 3/2 O2 (g) → OSO (g) + H2O (cr,l)  | ΔrH°(298.15 K) = -134.24 ± 0.16 kcal/mol | Kapustinskii 1958 | 1.4 | 8192.3 | H2S (g) → H (g) + SH (g)  | ΔrH°(0 K) = 31430 ± 20 (×1.384) cm-1 | Cook 2001 | 1.3 | 8088.4 | S2 (g) + 2 H2 (g) → 2 H2S (g)  | ΔrG°(1515 K) = -31.42 ± 0.80 (×1.61) kJ/mol | Randall 1918, Gurvich TPIS, 2nd Law | 1.2 | 8205.3 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.044) kcal/mol | Waddington 1956, Mansson 1963, est unc | 1.2 | 8184.13 | SH (g) → H (g) + S (g)  | ΔrH°(0 K) = 349.53 ± 1.00 kJ/mol | Csaszar 2003a, note unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of SH (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 98.3 | Sulfanylium | [SH]+ (g) | | 1148.48 | 1148.49 | ± 0.20 | kJ/mol | 33.0734 ± 0.0060 | 12273-42-6*0 | 86.0 | Hydrosulfide | [SH]- (g) | | -80.51 | -80.51 | ± 0.19 | kJ/mol | 33.0745 ± 0.0060 | 15035-72-0*0 | 85.4 | Hydrogen sulfide | H2S (g) | | -17.34 | -20.27 | ± 0.19 | kJ/mol | 34.0819 ± 0.0060 | 7783-06-4*0 | 85.0 | Sulfoniumyl | [H2S]+ (g) | | 992.68 | 989.77 | ± 0.19 | kJ/mol | 34.0813 ± 0.0060 | 26453-60-1*0 | 61.0 | Monosulfur anion | S- (g) | | 76.49 | 78.54 | ± 0.14 | kJ/mol | 32.0665 ± 0.0060 | 14337-03-2*0 | 61.0 | Sulfur | S (g) | | 276.90 | 279.14 | ± 0.14 | kJ/mol | 32.0660 ± 0.0060 | 7704-34-9*0 | 60.8 | Monosulfur cation | S+ (g) | | 1276.48 | 1278.27 | ± 0.14 | kJ/mol | 32.0655 ± 0.0060 | 14701-12-3*0 | 60.8 | Disulfur | S2 (g) | | 127.50 | 127.81 | ± 0.27 | kJ/mol | 64.1320 ± 0.0120 | 23550-45-0*0 | 59.9 | Sulfur atom dication | [S]+2 (g) | | 3528.25 | 3531.94 | ± 0.14 | kJ/mol | 32.0649 ± 0.0060 | 14127-58-3*0 | 58.3 | Sulfur monoxide | SO (g) | | 6.02 | 6.07 | ± 0.13 | kJ/mol | 48.0654 ± 0.0060 | 13827-32-2*0 |
|
Most Influential reactions involving SH (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov [DOI: 10.17038/CSE/1885923]
|
4
|
|
Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021)
[DOI: 10.5194/acp2021-228]
|
5
|
|
B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022)
[DOI: 10.1039/D1FD00124H]
|
8
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
9
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|