Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3] This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]
|
Chloromethane |
Formula: CH3Cl (l) |
CAS RN: 74-87-3 |
ATcT ID: 74-87-3*590 |
SMILES: CCl |
InChI: InChI=1S/CH3Cl/c1-2/h1H3 |
InChIKey: NEHMKBQYUWJMIP-UHFFFAOYSA-N |
Hills Formula: C1H3Cl1 |
2D Image: |
|
Aliases: CH3Cl; Chloromethane; Methyl chloride; Methyl monochloride; Monochloromethane; Carbon monochloride; Monochlorocarbon; RCRA U045; UN 1063; Freon 40; R 40; Artic; MeCl |
Relative Molecular Mass: 50.4872 ± 0.0012 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-106.52 | -102.56 | ± 0.16 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of CH3Cl (l)The 20 contributors listed below account only for 56.7% of the provenance of ΔfH° of CH3Cl (l). A total of 336 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 20.3 | 5520.1 | CH3Br (g) → [CH3]+ (g) + Br (g)  | ΔrH°(0 K) = 12.834 ± 0.002 eV | Song 2001 | 12.4 | 5513.6 | 4 CH3Cl (g) → CCl4 (g) + 3 CH4 (g)  | ΔrH°(0 K) = 2.52 ± 0.30 kcal/mol | Karton 2017 | 3.5 | 5698.7 | CH4 (g) + CH2Cl2 (g) → 2 CH3Cl (g)  | ΔrH°(0 K) = 1.03 ± 0.25 kcal/mol | Karton 2017, Karton 2011, Karton 2007, Karton 2006 | 3.3 | 2245.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 2.4 | 5504.1 | CH3Cl (g) + 3/2 O2 (g) → CO2 (g) + H2O (cr,l) + HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -764.00 ± 0.50 (×1.915) kJ/mol | Fletcher 1971 | 1.4 | 5701.6 | CH4 (g) + CCl4 (g) → CH3Cl (g) + CHCl3 (g)  | ΔrH°(0 K) = -3.24 ± 0.25 kcal/mol | Karton 2017, Karton 2011, Karton 2007, Karton 2006 | 1.3 | 5699.7 | CH4 (g) + CHCl3 (g) → CH2Cl2 (g) + CH3Cl (g)  | ΔrH°(0 K) = -0.13 ± 0.25 kcal/mol | Karton 2017, Karton 2011, Karton 2007, Karton 2006 | 1.3 | 5507.10 | CH3Cl (g) + H (g) → CH4 (g) + Cl (g)  | ΔrH°(0 K) = -7296 ± 100 cm-1 | Czako 2012 | 1.1 | 1162.1 | [HBr]+ (g) → H (g) + Br+ (g)  | ΔrH°(0 K) = 31394.5 ± 20 (×1.957) cm-1 | Haugh 1971, Norling 1935 | 1.0 | 5523.1 | CH3Br (g) + H2 (g) → CH4 (g) + HBr (g)  | ΔrH°(523.15 K) = -18.062 ± 0.321 kcal/mol | Fowell 1965 | 0.9 | 5500.3 | CH3Cl (g) → C (g) + 3 H (g) + Cl (g)  | ΔrH°(0 K) = 371.31 ± 0.35 kcal/mol | Karton 2017 | 0.9 | 1152.1 | Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq)  | ΔrH°(298.15 K) = -91.29 ± 0.40 (×2.327) kJ/mol | Johnson 1963, as quoted by CODATA Key Vals | 0.9 | 1152.2 | Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq)  | ΔrH°(298.15 K) = -91.29 ± 0.80 (×1.164) kJ/mol | Sunner 1964, as quoted by CODATA Key Vals | 0.8 | 5461.8 | HCCCl (g) + CH4 (g) → HCCH (g) + CH3Cl (g)  | ΔrH°(0 K) = -2.17 ± 0.25 kcal/mol | Karton 2017, Karton 2011, Karton 2007, Karton 2006 | 0.8 | 5983.8 | CO2 (g) + CCl4 (g) → 2 CCl2O (g)  | ΔrH°(0 K) = 11.18 ± 0.25 kcal/mol | Karton 2017, Karton 2011, Karton 2007, Karton 2006 | 0.8 | 5235.6 | CCl4 (g) + 4 F (g) → CF4 (g) + 4 Cl (g)  | ΔrH°(0 K) = -160.16 ± 0.30 kcal/mol | Karton 2017 | 0.7 | 5500.5 | CH3Cl (g) → C (g) + 3 H (g) + Cl (g)  | ΔrH°(0 K) = 371.34 ± 0.4 kcal/mol | Feller 2008 | 0.7 | 5729.6 | 3 CH3Cl (g) → CHCl3 (g) + 2 CH4 (g)  | ΔrH°(0 K) = -0.33 ± 0.9 kcal/mol | Ruscic W1RO | 0.6 | 5516.10 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(243.750 K) = 0.489 ± 0.083 kJ/mol | Messerly 1940, 3rd Law, ThermoData 2004 | 0.6 | 5516.16 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(243.190 K) = 0.543 ± 0.083 kJ/mol | Ganeff 1948, 3rd Law, ThermoData 2004 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3Cl (l) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 97.8 | Chloromethane | CH3Cl (g) | | -74.73 | -82.66 | ± 0.16 | kJ/mol | 50.4872 ± 0.0012 | 74-87-3*0 | 96.7 | Chloromethane cation | [CH3Cl]+ (g) | | 1014.55 | 1007.78 | ± 0.16 | kJ/mol | 50.4867 ± 0.0012 | 12538-71-5*0 | 64.7 | Bromomethane | CH3Br (g) | | -20.91 | -36.31 | ± 0.16 | kJ/mol | 94.9385 ± 0.0013 | 74-83-9*0 | 62.1 | Bromomethane cation | [CH3Br]+ (g) | | 996.21 | 981.29 | ± 0.17 | kJ/mol | 94.9380 ± 0.0013 | 12538-70-4*0 | 60.2 | Bromomethane | CH3Br (l) | | -56.63 | -59.65 | ± 0.17 | kJ/mol | 94.9385 ± 0.0013 | 74-83-9*590 | -35.2 | Hydrogen bromide | HBr (aq, 500 H2O) | | | -120.35 | ± 0.14 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*833 | -35.2 | Hydrogen bromide | HBr (aq, 3000 H2O) | | | -120.64 | ± 0.14 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*842 | -35.2 | Hydrogen bromide | HBr (aq, 2570 H2O) | | | -120.62 | ± 0.14 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*952 | -37.9 | Bromoniumyl | [HBr]+ (g) | | 1097.79 | 1089.94 | ± 0.13 | kJ/mol | 80.9114 ± 0.0010 | 12258-64-9*0 | -37.9 | Hydrogen bromide | HBr (g) | | -27.88 | -35.73 | ± 0.13 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*0 |
|
Most Influential reactions involving CH3Cl (l)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.156 | 5516.16 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(243.190 K) = 0.543 ± 0.083 kJ/mol | Ganeff 1948, 3rd Law, ThermoData 2004 | 0.156 | 5516.10 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(243.750 K) = 0.489 ± 0.083 kJ/mol | Messerly 1940, 3rd Law, ThermoData 2004 | 0.129 | 5516.4 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(231.405 K) = 1.626 ± 0.091 kJ/mol | ThermoData 2004, 3rd Law | 0.121 | 5516.14 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(273.130 K) = -2.049 ± 0.094 kJ/mol | Ganeff 1948, 3rd Law, ThermoData 2004 | 0.121 | 5516.12 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(228.426 K) = 1.879 ± 0.094 kJ/mol | Messerly 1940, 3rd Law, ThermoData 2004 | 0.085 | 5516.2 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(213.995 K) = 3.202 ± 0.112 kJ/mol | ThermoData 2004, 3rd Law | 0.059 | 5516.6 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(299.231 K) = -4.216 ± 0.135 kJ/mol | ThermoData 2004, 3rd Law | 0.054 | 5515.7 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(248.945 K) = 21.796 ± 0.14 kJ/mol | Messerly 1940, ThermoData 2004 | 0.054 | 5515.6 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(248.955 K) = 21.861 ± 0.14 kJ/mol | McGovern 1943, ThermoData 2004 | 0.020 | 5516.8 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(311.370 K) = -5.194 ± 0.159 (×1.445) kJ/mol | Hsu 1964, 3rd Law, ThermoData 2004 | 0.013 | 5515.2 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(298.15 K) = 20.18 ± 0.24 (×1.189) kJ/mol | ThermoData 2004 | 0.012 | 5515.9 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(283.948 K) = 20.181 ± 0.17 (×1.756) kJ/mol | Griffiths 1932, ThermoData 2004 | 0.004 | 5515.5 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(298.15 K) = 20.26 ± 0.5 kJ/mol | Manion 2002, Shorthose 1924, est unc | 0.003 | 5515.3 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(292.24 K) = 20.71 ± 0.50 (×1.067) kJ/mol | Yates 1926, est unc | 0.002 | 5515.1 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(298.15 K) = 20.5 ± 0.3 (×2.044) kJ/mol | Manion 2002 | 0.000 | 5516.13 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(273.130 K) = 21.348 ± 1.171 kJ/mol | Ganeff 1948, 2nd Law, ThermoData 2004 | 0.000 | 5516.9 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(243.750 K) = 22.107 ± 1.223 kJ/mol | Messerly 1940, 2nd Law, ThermoData 2004 | 0.000 | 5516.15 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(243.190 K) = 22.164 ± 1.235 kJ/mol | Ganeff 1948, 2nd Law, ThermoData 2004 | 0.000 | 5516.5 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(299.231 K) = 20.123 ± 1.403 kJ/mol | ThermoData 2004, 2nd Law | 0.000 | 5516.3 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(231.405 K) = 22.544 ± 1.465 kJ/mol | ThermoData 2004, 2nd Law |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov [DOI: 10.17038/CSE/1885923]
|
4
|
|
Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021)
[DOI: 10.5194/acp2021-228]
|
5
|
|
B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022)
[DOI: 10.1039/D1FD00124H]
|
8
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
9
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|