Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Neon heptacation

Formula: [Ne]+7 (g)
CAS RN: 14175-50-9
ATcT ID: 14175-50-9*0
SMILES: [Ne+7]
InChI: InChI=1S/Ne/q+7
InChIKey: XVQFAXMGRFHXKX-UHFFFAOYSA-N
Hills Formula: Ne1+7

2D Image:

[Ne+7]
Aliases: [Ne]+7; Neon heptacation; Neon ion (7+); Neon atom heptacation; Neon atom ion (7+); Atomic neon heptacation; Atomic neon ion (7+)
Relative Molecular Mass: 20.17586 ± 0.00060

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
68948.768948.7± 1.4kJ/mol

3D Image of [Ne]+7 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [Ne]+7 (g)

The 7 contributors listed below account for 93.4% of the provenance of ΔfH° of [Ne]+7 (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
60.58028.1 [Ne]+4 (g) → [Ne]+5 (g) ΔrH°(0 K) = 1018250 ± 100 cm-1Kramida 1999
10.88029.1 [Ne]+5 (g) → [Ne]+6 (g) ΔrH°(0 K) = 1273820 ± 40 cm-1Kramida 1999b
7.28028.3 [Ne]+4 (g) → [Ne]+5 (g) ΔrH°(0 K) = 1018500 ± 290 cm-1Biemont 1999
3.78030.2 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671900 ± 100 cm-1Kramida 2006c
3.78030.5 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671792 ± 100 cm-1Edlen 1971, Edlen 1972, Kramida 2006c
3.78030.6 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671821 ± 100 cm-1Odabasi 1979, est unc
3.78030.7 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671744.6 ± 100 cm-1Chung 1993, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of [Ne]+7 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.7 Neon octacation[Ne]+8 (g)[Ne+8]92018.292018.2± 1.4kJ/mol20.17531 ±
0.00060
14782-26-4*0
99.7 Neon nonacation[Ne]+9 (g)[Ne+9]207396.1207396.1± 1.4kJ/mol20.17476 ±
0.00060
15721-59-2*0
99.7 Neon decacation[Ne]+10 (g)[Ne+10]338828.3338828.3± 1.4kJ/mol20.17421 ±
0.00060
32218-07-8*0
91.1 Neon hexacation[Ne]+6 (g)[Ne+6]48949.348949.3± 1.3kJ/mol20.17641 ±
0.00060
14041-57-7*0
84.5 Neon pentacation[Ne]+5 (g)[Ne+5]33711.133711.1± 1.2kJ/mol20.17696 ±
0.00060
14175-48-5*0
17.7 Neon tetracation[Ne]+4 (g)[Ne+4]21529.8121531.45± 0.25kJ/mol20.17751 ±
0.00060
14041-56-6*0
2.3 Neon trication[Ne]+3 (g)[Ne+3]12152.40312152.403± 0.032kJ/mol20.17805 ±
0.00060
14158-25-9*0

Most Influential reactions involving [Ne]+7 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5698031.5 [Ne]+7 (g) → [Ne]+8 (g) ΔrH°(0 K) = 1928462.6 ± 11.2 cm-1Chung 1992, Chung 1991, note unc
0.3178031.3 [Ne]+7 (g) → [Ne]+8 (g) ΔrH°(0 K) = 1928447 ± 15 cm-1Kramida 2006b, Chen 1995, McKenzie 1991
0.2198030.2 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671900 ± 100 cm-1Kramida 2006c
0.2198030.7 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671744.6 ± 100 cm-1Chung 1993, est unc
0.2198030.6 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671821 ± 100 cm-1Odabasi 1979, est unc
0.2198030.5 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671792 ± 100 cm-1Edlen 1971, Edlen 1972, Kramida 2006c
0.0548030.9 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671725.3 ± 200 cm-1Chen 1997a, est unc
0.0548030.8 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671970 ± 200 cm-1Safronova 1996, est unc
0.0338031.4 [Ne]+7 (g) → [Ne]+8 (g) ΔrH°(0 K) = 1928454 ± 46 cm-1Kramida 2006b, note unc
0.0288031.2 [Ne]+7 (g) → [Ne]+8 (g) ΔrH°(0 K) = 1928462 ± 50 cm-1Kelly 1987, Bashkin 1975, Chung 1992, est unc
0.0268031.6 [Ne]+7 (g) → [Ne]+8 (g) ΔrH°(0 K) = 1928449 ± 52 cm-1Edlen 1979
0.0148031.7 [Ne]+7 (g) → [Ne]+8 (g) ΔrH°(0 K) = 1928450 ± 70 cm-1Biemont 1999
0.0088030.3 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1671600 ± 500 cm-1Biemont 1999, est unc
0.0078031.8 [Ne]+7 (g) → [Ne]+8 (g) ΔrH°(0 K) = 1928480 ± 100 cm-1Odabasi 1979, est unc
0.0028030.1 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 1672000 ± 1000 cm-1Tondello 1970
0.0018031.1 [Ne]+7 (g) → [Ne]+8 (g) ΔrH°(0 K) = 1928350 ± 200 cm-1Tondello 1970
0.0008030.4 [Ne]+6 (g) → [Ne]+7 (g) ΔrH°(0 K) = 207.26 ± 0.2 eVLotz 1967


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.