Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3] This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]
|
Buckminsterfullerene |
Formula: C60 (g) |
CAS RN: 99685-96-8 |
ATcT ID: 99685-96-8*0 |
SMILES: c12c3c4c5c1c6c7c8c2c9c1c3c2c3c4c4c%10c5c5c6c6c7c7c%11c8c9c8c9c1c2c1c |
InChI: InChI=1S/C60/c1-2-5-6-3(1)8-12-10-4(1)9-11-7(2)17-21-13(5)23-24-14(6)22-18( |
InChIKey: XMWRBQBLMFGWIX-UHFFFAOYSA-N |
Hills Formula: C60 |
2D Image: |
|
Aliases: C60; Buckminsterfullerene; [60]Fullerene; [5,6]Fullerene-C60-Ih; Buckyball; Carbon; Follene-60; Footballene; Soccerballene; Fullerene; Fullerene-60; Fullerene-C60; Icosahedral C60; Nano-C60; Nanom Purple; Nanom Purple N 60S; Nanom Purple ST; Nanom Purple ST-A; Nanom Purple SU; Tris-PC61BOE; XFC 01; [5,6]Fullerene C60 |
Relative Molecular Mass: 720.6420 ± 0.0480 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
2524.7 | 2520.0 | ± 6.5 | kJ/mol |
|
3D Image of C60 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of C60 (g)The 15 contributors listed below account for 90.0% of the provenance of ΔfH° of C60 (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 20.9 | 7958.1 | C60 (g) → 60 C (g)  | ΔrH°(0 K) = 40167.9 ± 12 kJ/mol | Wan 2016, est unc | 16.3 | 7958.3 | C60 (g) → 60 C (g)  | ΔrH°(0 K) = 40158.0 ± 13.6 kJ/mol | Karton 2013, Dobek 2013 | 13.3 | 7958.5 | C60 (g) → 60 C (g)  | ΔrH°(0 K) = 40148.6 ± 15 kJ/mol | Dobek 2013 | 13.2 | 7958.4 | C60 (g) → 60 C (g)  | ΔrH°(0 K) = 40159.2 ± 15.1 kJ/mol | Bumpus 2018 | 9.9 | 7959.1 | C60 (cr,l) + 60 O2 (g) → 60 CO2 (g)  | ΔrH°(298.15 K) = -25965 ± 20 kJ/mol | Kolesov 1996, est unc | 6.8 | 7958.2 | C60 (g) → 60 C (g)  | ΔrH°(0 K) = 40159.6 ± 21 kJ/mol | Chan 2016 | 3.2 | 7959.2 | C60 (cr,l) + 60 O2 (g) → 60 CO2 (g)  | ΔrH°(298.15 K) = -25938 ± 35 kJ/mol | Beckhaus 1994, note unc, est unc | 1.2 | 7959.3 | C60 (cr,l) + 60 O2 (g) → 60 CO2 (g)  | ΔrH°(298.15 K) = -6188.4 ± 10 (×1.325) kcal/mol | Beckhaus 1992, note unc2, est unc | 1.0 | 7959.4 | C60 (cr,l) + 60 O2 (g) → 60 CO2 (g)  | ΔrH°(298.15 K) = -25888.0 ± 25 (×2.43) kJ/mol | Diogo 1993, note unc, est unc | 0.9 | 7959.5 | C60 (cr,l) + 60 O2 (g) → 60 CO2 (g)  | ΔrH°(298.15 K) = -25883.5 ± 30 (×2.181) kJ/mol | Kiyobayashi 1993, note unc | 0.8 | 2149.2 | CO (g) → C+ (g) + O (g)  | ΔrH°(0 K) = 22.3713 ± 0.0015 eV | Ng 2007 | 0.7 | 2245.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 0.5 | 7959.6 | C60 (cr,l) + 60 O2 (g) → 60 CO2 (g)  | ΔrH°(298.15 K) = -26032.3 ± 30 (×2.828) kJ/mol | Steele 1992, est unc | 0.4 | 120.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 0.3 | 2101.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of C60 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 98.6 | Buckminsterfullerene | C60 (cr,l) | | 2329.6 | 2339.0 | ± 6.5 | kJ/mol | 720.6420 ± 0.0480 | 99685-96-8*500 | 35.2 | Carbon cation | C+ (g) | | 1797.857 | 1803.455 | ± 0.044 | kJ/mol | 12.01015 ± 0.00080 | 14067-05-1*0 | 35.2 | Carbon | C (g, quintuplet) | | 1114.967 | 1120.114 | ± 0.044 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*3 | 35.2 | Carbon | C (g, singlet) | | 833.335 | 838.482 | ± 0.044 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*2 | 35.2 | Carbon | C (g, triplet) | | 711.404 | 716.889 | ± 0.044 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*1 | 35.2 | Carbon | C (g) | | 711.404 | 716.889 | ± 0.044 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*0 | 35.2 | Carbon dication | [C]+2 (g) | | 4150.474 | 4155.620 | ± 0.044 | kJ/mol | 12.00960 ± 0.00080 | 16092-61-8*0 | 35.1 | Carbon anion | C- (g) | | 589.628 | 594.774 | ± 0.044 | kJ/mol | 12.01125 ± 0.00080 | 14337-00-9*0 | 33.5 | Ethynylene | C2 (g) | | 820.005 | 828.470 | ± 0.092 | kJ/mol | 24.0214 ± 0.0016 | 12070-15-4*0 | 33.5 | Ethynylene | C2 (g, singlet) | | 820.005 | 826.577 | ± 0.092 | kJ/mol | 24.0214 ± 0.0016 | 12070-15-4*2 |
|
Most Influential reactions involving C60 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.275 | 7960.2 | C60 (cr,l) → C60 (g)  | ΔrH°(298.15 K) = 180 ± 2 kJ/mol | Schonherr 2000, as quoted by NIST WebBook | 0.275 | 7960.11 | C60 (cr,l) → C60 (g)  | ΔrH°(730 K) = 176 ± 2 kJ/mol | Mathews 1991 | 0.251 | 7958.1 | C60 (g) → 60 C (g)  | ΔrH°(0 K) = 40167.9 ± 12 kJ/mol | Wan 2016, est unc | 0.195 | 7958.3 | C60 (g) → 60 C (g)  | ΔrH°(0 K) = 40158.0 ± 13.6 kJ/mol | Karton 2013, Dobek 2013 | 0.163 | 7960.5 | C60 (cr,l) → C60 (g)  | ΔrH°(298.15 K) = 181.1 ± 2.6 kJ/mol | Korobov 1994, Pankajavalli 1998 | 0.161 | 7958.5 | C60 (g) → 60 C (g)  | ΔrH°(0 K) = 40148.6 ± 15 kJ/mol | Dobek 2013 | 0.158 | 7958.4 | C60 (g) → 60 C (g)  | ΔrH°(0 K) = 40159.2 ± 15.1 kJ/mol | Bumpus 2018 | 0.131 | 7960.4 | C60 (cr,l) → C60 (g)  | ΔrH°(860 K) = 175.2 ± 2.9 kJ/mol | Piacente 1995 | 0.082 | 7958.2 | C60 (g) → 60 C (g)  | ΔrH°(0 K) = 40159.6 ± 21 kJ/mol | Chan 2016 | 0.068 | 7960.3 | C60 (cr,l) → C60 (g)  | ΔrH°(930 K) = 175 ± 4 kJ/mol | Gong 1999, Pankajavalli 1998 | 0.042 | 7960.8 | C60 (cr,l) → C60 (g)  | ΔrH°(700 K) = 181.4 ± 2.3 (×2.229) kJ/mol | Mathews 1992, Sai Baba 1994, Pankajavalli 1998 | 0.015 | 7960.12 | C60 (cr,l) → C60 (g)  | ΔrH°(707 K) = 167.8 ± 5.4 (×1.576) kJ/mol | Pan 1991 | 0.011 | 7960.10 | C60 (cr,l) → C60 (g)  | ΔrH°(634 K) = 180 ± 10 kJ/mol | Dai 1994 | 0.003 | 7960.7 | C60 (cr,l) → C60 (g)  | ΔrH°(773 K) = 38 ± 1 (×4) kcal/mol | Abrefah 1992, Pankajavalli 1998 | 0.003 | 7960.9 | C60 (cr,l) → C60 (g)  | ΔrH°(773 K) = 158.6 ± 4 (×4.269) kJ/mol | Mathews 1993, est unc | 0.003 | 7960.6 | C60 (cr,l) → C60 (g)  | ΔrH°(715 K) = 158 ± 3 (×6.169) kJ/mol | Popovic 1994, Pankajavalli 1998, 2nd Law | 0.002 | 7960.1 | C60 (cr,l) → C60 (g)  | ΔrH°(897 K) = 152.8 ± 1.0 (×20.3) kJ/mol | Pankajavalli 1998, note unc3 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov [DOI: 10.17038/CSE/1885923]
|
4
|
|
Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021)
[DOI: 10.5194/acp2021-228]
|
5
|
|
B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022)
[DOI: 10.1039/D1FD00124H]
|
8
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
9
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|