Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Hydrazine monohydrate

Formula: (NH2NH2)(H2O) (l)
CAS RN: 7803-57-8
ATcT ID: 7803-57-8*500
SMILES: NN.O
InChI: InChI=1S/H4N2.H2O/c1-2;/h1-2H2;1H2
InChIKey: IKDUDTNKRLTJSI-UHFFFAOYSA-N
Hills Formula: H6N2O1

2D Image:

NN.O
Aliases: (H2NNH2)(H2O); Hydrazine monohydrate; Hydrazine hydrate; Hydrazine hydroxide; Hydrazinium hydroxide
Relative Molecular Mass: 50.06052 ± 0.00053

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-242.56± 0.19kJ/mol

Top contributors to the provenance of ΔfH° of (NH2NH2)(H2O) (l)

The 5 contributors listed below account for 90.1% of the provenance of ΔfH° of (NH2NH2)(H2O) (l).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
56.11746.1 (NH2NH2)(H2O) (l) O2 (g) → 3 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -146.98 ± 0.05 kcal/molHughes 1939, Cole 1951
21.71744.1 NH2NH2 (cr,l) O2 (g) → 2 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -148.68 ± 0.08 kcal/molHughes 1939, Cole 1951, Hughes 1938
6.11744.2 NH2NH2 (cr,l) O2 (g) → 2 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -148.62 ± 0.15 kcal/molAston 1952, est unc
5.5120.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.61745.1 NH2NH2 (cr,l) → NH2NH2 (g) ΔrH°(298.15 K) = 10.69 ± 0.10 (×5.076) kcal/molScott 1949, apud JANAF 3

Top 10 species with enthalpies of formation correlated to the ΔfH° of (NH2NH2)(H2O) (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.5 HydrazineNH2NH2 (cr,l)NN57.3150.75± 0.18kJ/mol32.04524 ±
0.00031
302-01-2*500
38.9 WaterH2O (cr, l, eq.press.)O-286.269-285.797± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*499
38.9 WaterH2O (l, eq.press.)O-285.797± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*589
38.9 Oxonium[H3O]+ (aq)[OH3+]-285.796± 0.025kJ/mol19.02267 ±
0.00037
13968-08-6*800
38.9 WaterH2O (l)O-285.796± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*590
38.9 WaterH2O (cr,l)O-286.268-285.796± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*500
38.9 WaterH2O (g)O-238.898-241.801± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*0
38.9 WaterH2O (g, para)O-238.898-241.801± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*2
38.9 WaterH2O (g, ortho)O-238.613-241.801± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*1
38.9 WaterH2O (cr)O-286.268-292.708± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*510

Most Influential reactions involving (NH2NH2)(H2O) (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9961747.1 NH2NH2 (cr,l) H2O (cr,l) → (NH2NH2)(H2O) (l) ΔrH°(298.15 K) = -1.797 ± 0.005 kcal/molBushnell 1937, est unc
0.6621746.1 (NH2NH2)(H2O) (l) O2 (g) → 3 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -146.98 ± 0.05 kcal/molHughes 1939, Cole 1951


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.