Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Fluorine atom hexacation

Formula: [F]+6 (g)
CAS RN: 14701-04-3
ATcT ID: 14701-04-3*0
SMILES: [F+6]
InChI: InChI=1S/F/q+6
InChIKey: BPDMPGIWWXGUSV-UHFFFAOYSA-N
Hills Formula: F1+6

2D Image:

[F+6]
Aliases: [F]+6; Fluorine atom hexacation; Fluorine atom ion (6+); Atomic fluorine hexacation; Atomic fluorine ion (6+); Monofluorine hexacation; Monofluorine ion (6+); Monfluorine hexacation; Monfluorine ion (6+); Fluorine hexacation; Fluorine ion (6+)
Relative Molecular Mass: 18.99511172 ± 0.00000050

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
45781.545783.3± 1.8kJ/mol

3D Image of [F]+6 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [F]+6 (g)

The 2 contributors listed below account for 93.8% of the provenance of ΔfH° of [F]+6 (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
86.0431.1 [F]+3 (g) → [F]+4 (g) ΔrH°(0 K) = 703110 ± 140 cm-1NIST Atomic Web, Biemont 1999
7.7432.1 [F]+4 (g) → [F]+5 (g) ΔrH°(0 K) = 921480 ± 50 cm-1NIST Atomic Web, Biemont 1999

Top 10 species with enthalpies of formation correlated to the ΔfH° of [F]+6 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Fluorine atom pentacation[F]+5 (g)[F+5]30617.630619.4± 1.8kJ/mol18.99566030 ±
0.00000050
14701-05-4*0
99.9 Fluorine atom heptacation[F]+7 (g)[F+7]63649.363651.1± 1.8kJ/mol18.99456314 ±
0.00000050
14700-77-7*0
99.9 Fluorine atom octacation[F]+8 (g)[F+8]155686.5155688.3± 1.8kJ/mol18.99401456 ±
0.00000050
15721-58-1*0
99.9 Fluorine atom nonacation[F]+9 (g)[F+9]262121.1262122.9± 1.8kJ/mol18.99346598 ±
0.00000050
35424-07-8*0
95.0 Fluorine atom tetracation[F]+4 (g)[F+4]19594.319596.6± 1.7kJ/mol18.99620888 ±
0.00000050
14700-79-9*0
1.8 Fluorine atom trication[F]+3 (g)[F+3]11182.87111186.696± 0.032kJ/mol18.99675746 ±
0.00000050
14700-88-0*0
1.1 Fluorine atom dication[F]+2 (g)[F+2]5132.4715134.255± 0.021kJ/mol18.99730604 ±
0.00000050
14701-07-6*0

Most Influential reactions involving [F]+6 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.999433.1 [F]+5 (g) → [F]+6 (g) ΔrH°(0 K) = 1267606 ± 2 cm-1NIST Atomic Web, Engstrom 1985
0.997434.1 [F]+6 (g) → [F]+7 (g) ΔrH°(0 K) = 1493632 ± 5 cm-1NIST Atomic Web, Engstrom 1984
0.002434.2 [F]+6 (g) → [F]+7 (g) ΔrH°(0 K) = 1493656 ± 100 cm-1
0.000433.2 [F]+5 (g) → [F]+6 (g) ΔrH°(0 K) = 1267581 ± 100 cm-1


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.