Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Nitromethane

Formula: CH3N(O)O (cr,l)
CAS RN: 75-52-5
ATcT ID: 75-52-5*500
SMILES: C[N+](=O)[O-]
InChI: InChI=1S/CH3NO2/c1-2(3)4/h1H3
InChIKey: LYGJENNIWJXYER-UHFFFAOYSA-N
Hills Formula: C1H3N1O2

2D Image:

C[N+](=O)[O-]
Aliases: CH3N(O)O; Nitromethane; Nitrocarbol; Nitrofuel; Nitroparaffin; NM; NM-55; UN 1261
Relative Molecular Mass: 61.0401 ± 0.0010

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-114.09-112.91± 0.43kJ/mol

Top contributors to the provenance of ΔfH° of CH3N(O)O (cr,l)

The 15 contributors listed below account for 90.1% of the provenance of ΔfH° of CH3N(O)O (cr,l).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
52.66596.1 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -339.02 ± 0.28 kcal/molProsen 1954, Cass 1958
25.76596.2 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -339.2 ± 0.4 kcal/molLebedeva 1973, note unc2
4.16596.4 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -339.0 ± 1 kcal/molSwientoslawski 1910, est unc
1.76596.6 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -1425.02 ± 1.10 (×5.907) kJ/molVerevkin 2014
1.16593.8 CH3N(O)O (g) → CH3 (g) [ONO]+ (g) ΔrH°(0 K) = 12.170 ± 0.040 eVRuscic W1RO
0.66607.5 CH3ONO (g, cis) → CH3N(O)O (g) ΔrH°(0 K) = -1.91 ± 1.2 kcal/molRuscic W1RO
0.56607.4 CH3ONO (g, cis) → CH3N(O)O (g) ΔrH°(0 K) = -1.86 ± 1.3 kcal/molRuscic CBS-n
0.56607.2 CH3ONO (g, cis) → CH3N(O)O (g) ΔrH°(0 K) = -2.33 ± 1.3 kcal/molRuscic G4
0.46594.5 CH3N(O)O (g) H2O (g) → CH3OH (g) HN(O)O (g) ΔrH°(0 K) = 17.71 ± 1.2 kcal/molRuscic W1RO
0.46607.1 CH3ONO (g, cis) → CH3N(O)O (g) ΔrH°(0 K) = -1.77 ± 1.4 kcal/molRuscic G3X
0.46596.3 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -336.0 ± 0.6 (×5.076) kcal/molKnobel 1971
0.46591.5 CH3N(O)O (g) → C (g) + 3 H (g) N (g) + 2 O (g) ΔrH°(0 K) = 570.15 ± 1.50 kcal/molRuscic W1RO
0.46592.5 CH3N(O)O (g) → CH3 (g) ONO (g) ΔrH°(0 K) = 59.79 ± 1.50 kcal/molRuscic W1RO
0.46594.2 CH3N(O)O (g) H2O (g) → CH3OH (g) HN(O)O (g) ΔrH°(0 K) = 17.41 ± 1.3 kcal/molRuscic G4
0.46594.4 CH3N(O)O (g) H2O (g) → CH3OH (g) HN(O)O (g) ΔrH°(0 K) = 17.69 ± 1.3 kcal/molRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3N(O)O (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
91.2 NitromethaneCH3N(O)O (g)C[N+](=O)[O-]-60.75-74.64± 0.46kJ/mol61.0401 ±
0.0010
75-52-5*0
30.8 NitromethylCH2N(O)O (g)C=[N+](=O)[O-]139.2129.8± 1.2kJ/mol60.0321 ±
0.0010
16787-85-2*0
14.4 NitrobenzeneC6H5N(O)O (g)c1ccc(cc1)[N+](=O)[O-]82.162.1± 1.4kJ/mol123.1094 ±
0.0049
98-95-3*0
14.3 NitrobenzeneC6H5N(O)O (cr,l)c1ccc(cc1)[N+](=O)[O-]7.1± 1.4kJ/mol123.1094 ±
0.0049
98-95-3*500
7.6 Oxonium[H3O]+ (aq)[OH3+]-285.796± 0.025kJ/mol19.02267 ±
0.00037
13968-08-6*800
7.6 WaterH2O (cr, l, eq.press.)O-286.269-285.797± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*499
7.6 WaterH2O (cr,l)O-286.268-285.796± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*500
7.6 WaterH2O (l, eq.press.)O-285.797± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*589
7.6 WaterH2O (l)O-285.796± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*590
7.6 WaterH2O (g)O-238.898-241.801± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*0

Most Influential reactions involving CH3N(O)O (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5306596.1 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -339.02 ± 0.28 kcal/molProsen 1954, Cass 1958
0.2596596.2 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -339.2 ± 0.4 kcal/molLebedeva 1973, note unc2
0.2456595.4 CH3N(O)O (cr,l) → CH3N(O)O (g) ΔrH°(298.15 K) = 9.17 ± 0.09 kcal/molJones 1947, est unc
0.2456595.3 CH3N(O)O (cr,l) → CH3N(O)O (g) ΔrH°(298.15 K) = 9.09 ± 0.09 kcal/molHolcomb 1949
0.2456595.2 CH3N(O)O (cr,l) → CH3N(O)O (g) ΔrH°(298.15 K) = 9.171 ± 0.09 kcal/molMcCullough 1954, est unc
0.2406595.1 CH3N(O)O (cr,l) → CH3N(O)O (g) ΔrH°(298.15 K) = 38.36 ± 0.38 kJ/molMajer 1985
0.0416596.4 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -339.0 ± 1 kcal/molSwientoslawski 1910, est unc
0.0176596.6 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -1425.02 ± 1.10 (×5.907) kJ/molVerevkin 2014
0.0046596.3 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -336.0 ± 0.6 (×5.076) kcal/molKnobel 1971
0.0006596.7 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -348.8 ± 0.6 (×16.35) kcal/molCass 1958
0.0006596.8 CH3N(O)O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -350.49 ± 0.36 (×32) kcal/molHolcomb 1949


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.