Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3] This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]
|
Krypton cation |
Formula: Kr+ (g) |
CAS RN: 16915-28-9 |
ATcT ID: 16915-28-9*0 |
SMILES: [Kr+] |
InChI: InChI=1S/Kr/q+1 |
InChIKey: CRBLVWQHDVTIJD-UHFFFAOYSA-N |
Hills Formula: Kr1+ |
2D Image: |
|
Aliases: Kr+; Krypton cation; Krypton ion (1+); Krypton atom cation; Krypton atom ion (1+); Atomic krypton cation; Atomic krypton ion (1+) |
Relative Molecular Mass: 83.7995 ± 0.1000 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
1350.757 | 1350.756 | ± 0.000 | kJ/mol |
|
3D Image of Kr+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of Kr+ (g)The 4 contributors listed below account for 98.0% of the provenance of ΔfH° of Kr+ (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of Kr+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 1.0 | Krypton dication | [Kr]+2 (g) | | 3701.124 | 3701.124 | ± 0.013 | kJ/mol | 83.7989 ± 0.1000 | 18469-91-5*0 |
|
Most Influential reactions involving Kr+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 8055.1 | Kr+ (g) → [Kr]+2 (g)  | ΔrH°(0 K) = 196475.4 ± 1.0 cm-1 | Sugar 1991, Minnhagen 1969 | 0.444 | 8054.1 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 112914.433 ± 0.016 cm-1 | Saloman 2007 | 0.284 | 8054.2 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 112914.422 ± 0.020 cm-1 | Bounakhla 1993, Hollenstein 2003, Brandi 2002 | 0.126 | 8054.3 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 112914.412 ± 0.030 cm-1 | Sugar 1991, Hollenstein 2003, Brandi 2002 | 0.126 | 8054.4 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 112914.414 ± 0.030 cm-1 | Delsart 1981, Hollenstein 2003, Brandi 2002 | 0.015 | 8054.5 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 112914.512 ± 0.030 (×2.89) cm-1 | Yoon 1994, Hollenstein 2003, Brandi 2002 | 0.004 | 5740.1 | CF4 (g) + Kr+ (g) → [CF3]+ (g) + F (g) + Kr (g)  | ΔrG°(300 K) = 0.24 ± 0.07 eV | Fisher 1990a | 0.003 | 8054.6 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 112914.6 ± 0.1 (×1.756) cm-1 | Yoshino 1979 | 0.000 | 8054.7 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 112914.5 ± 0.5 cm-1 | Moore 1970, NSRDS-NBS 35, Petersson 1964, est unc | 0.000 | 8054.8 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 112925 ± 10 (×1.067) cm-1 | Chaghtai 1973 | 0.000 | 8054.11 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 14.000 ± 0.002 eV | Kimura 1981, est unc | 0.000 | 8054.10 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 13.999 ± 0.002 eV | Nicholson 1965 | 0.000 | 8054.14 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 14.01 ± 0.01 (×1.044) eV | Marquette 1985 | 0.000 | 8054.13 | Kr (g) → Kr+ (g)  | ΔrH°(0 K) = 14.05 ± 0.06 eV | Al-Joboury 1963, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov [DOI: 10.17038/CSE/1885923]
|
4
|
|
Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021)
[DOI: 10.5194/acp2021-228]
|
5
|
|
B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022)
[DOI: 10.1039/D1FD00124H]
|
8
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
9
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|