Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Fluoroform

Formula: CHF3 (g)
CAS RN: 75-46-7
ATcT ID: 75-46-7*0
SMILES: C(F)(F)F
InChI: InChI=1S/CHF3/c2-1(3)4/h1H
InChIKey: XPDWGBQVDMORPB-UHFFFAOYSA-N
Hills Formula: C1H1F3

2D Image:

C(F)(F)F
Aliases: CHF3; Fluoroform; Trifluoromethane; Methane trifluoride; Carbon trifluoride; Fluoryl; Methyl trifluoride; Methenyl trichloride; Trifluorocarbon; UN 1984; R 23; Halocarbon 23; Freon 23; Freon F-23; FC 23; HFC 23; HCFC 23; Genetron 23; Arcton 1; Arcton
Relative Molecular Mass: 70.01385 ± 0.00080

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-689.34-696.29± 0.38kJ/mol

3D Image of CHF3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CHF3 (g)

The 20 contributors listed below account only for 54.6% of the provenance of ΔfH° of CHF3 (g).
A total of 107 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
8.15697.7 CH2F2 (g) CF4 (g) → 2 CHF3 (g) ΔrH°(0 K) = -7.5 ± 2.0 kJ/molKlopper 2010a, est unc
6.45558.8 CHF3 (g) → C (g) + 3 F (g) H (g) ΔrH°(0 K) = 441.98 ± 0.35 kcal/molKarton 2017
3.95696.7 CH3F (g) CF4 (g) → CH2F2 (g) CHF3 (g) ΔrH°(0 K) = 22.4 ± 2.0 kJ/molKlopper 2010a, est unc
3.75580.1 CHF3 (g) I2 (g) → CF3I (g) HI (g) ΔrH°(298.15 K) = 17.10 ± 0.34 kcal/molGoy 1967, as quoted by Cox 1970
3.55559.1 CHF3 (g) → C (g) + 3/2 F2 (g) + 1/2 H2 (g) ΔrH°(0 K) = 1399.39 ± 2.0 kJ/molCsontos 2010
3.05563.8 CHF3 (g) CH3F (g) → CH4 (g) CF4 (g) ΔrH°(0 K) = -77.9 ± 2.0 kJ/molKlopper 2010a, est unc
2.45561.5 CHF3 (g) F (g) → CF4 (g) H (g) ΔrH°(0 K) = -101.4 ± 2.0 kJ/molKlopper 2010a, est unc
2.45561.4 CHF3 (g) F (g) → CF4 (g) H (g) ΔrH°(0 K) = -101.36 ± 2.0 kJ/molCsontos 2010
2.25697.6 CH2F2 (g) CF4 (g) → 2 CHF3 (g) ΔrH°(0 K) = -2.05 ± 0.9 kcal/molRuscic W1RO
2.05576.3 CHF3 (g) Br2 (g) → CF3Br (g) HBr (g) ΔrH°(298.15 K) = -4.59 ± 0.25 (×1.874) kcal/molCoomber 1967, as quoted by Cox 1970
1.85745.1 CHF3 (g) Br (g) → CF3 (g) HBr (g) ΔrH°(298.15 K) = 18.89 ± 0.5 kcal/molSyverud 1969, Arthur 1969, Amphlett 1968
1.85697.4 CH2F2 (g) CF4 (g) → 2 CHF3 (g) ΔrH°(0 K) = -1.90 ± 1.0 kcal/molRuscic G4
1.85560.4 CHF3 (g) + 2 H (g) → CH3F (g) + 2 F (g) ΔrH°(0 K) = 181.83 ± 2.0 (×1.242) kJ/molCsontos 2010
1.75562.1 CHF3 (g) O2 (g) + 2 H2O (cr,l) → 2 CO2 (g) + 6 HF (aq, 22 H2O) ΔrH°(298.15 K) = -180.66 ± 1.30 kcal/molNeugebauer 1958, as quoted by Cox 1970
1.75558.11 CHF3 (g) → C (g) + 3 F (g) H (g) ΔrH°(0 K) = 1851.2 ± 2.8 kJ/molKlopper 2010a
1.65619.7 CH2F2 (g) F (g) → CHF3 (g) H (g) ΔrH°(0 K) = -108.9 ± 2.0 kJ/molKlopper 2010a, est unc
1.65619.6 CH2F2 (g) F (g) → CHF3 (g) H (g) ΔrH°(0 K) = -106.45 ± 2.0 kJ/molCsontos 2010
1.55697.3 CH2F2 (g) CF4 (g) → 2 CHF3 (g) ΔrH°(0 K) = -1.98 ± 1.1 kcal/molRuscic G3X
1.35753.1 CHF3 (g) H (g) → CF3 (g) H2 (g) ΔrH°(298.15 K) = 2.09 ± 0.6 kcal/molRuscic 1998, Hranisavljevic 1998a
1.25576.1 CHF3 (g) Br2 (g) → CF3Br (g) HBr (g) ΔrH°(750 K) = -4.2 ± 0.6 kcal/molCorbett 1962

Top 10 species with enthalpies of formation correlated to the ΔfH° of CHF3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
93.8 FluoroformCHF3 (l)C(F)(F)F-704.76± 0.41kJ/mol70.01385 ±
0.00080
75-46-7*590
38.0 DifluoromethaneCH2F2 (g)C(F)F-443.38-450.99± 0.33kJ/mol52.02339 ±
0.00081
75-10-5*0
35.4 DifluoromethaneCH2F2 (l)C(F)F-468.98± 0.35kJ/mol52.02339 ±
0.00081
75-10-5*590
28.8 TetrafluoromethaneCF4 (g)C(F)(F)(F)F-927.77-933.74± 0.23kJ/mol88.00431 ±
0.00080
75-73-0*0
26.5 DifluorobromomethaneCHF2Br (g)C(F)(F)Br-411.12-424.31± 0.46kJ/mol130.9194 ±
0.0013
1511-62-2*0
24.1 BromotrifluoromethaneCF3Br (g)FC(F)(F)Br-638.73-650.84± 0.40kJ/mol148.9099 ±
0.0013
75-63-8*0
23.8 PolytetrafluoroethyleneCF2CF2 (s)FC(C(F)(F)[*:1])(F)[*:2]-830.20± 0.55kJ/mol100.0150 ±
0.0016
9002-84-0*591
23.0 IodotrifluoromethaneCF3I (g)C(F)(F)(F)I-583.30-589.18± 0.45kJ/mol195.91038 ±
0.00080
2314-97-8*0
21.5 Trifluoromethylium[CF3]+ (g)F[C+](F)F409.72406.51± 0.42kJ/mol69.00536 ±
0.00080
18851-76-8*0
21.4 TrifluoromethylCF3 (g)F[C](F)F-464.92-467.72± 0.43kJ/mol69.00591 ±
0.00080
2264-21-3*0

Most Influential reactions involving CHF3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9995565.1 CHF3 (l) → CHF3 (g) ΔrH°(188.75 K) = 16.80 ± 0.14 kJ/molThermoData 2004
0.1315580.1 CHF3 (g) I2 (g) → CF3I (g) HI (g) ΔrH°(298.15 K) = 17.10 ± 0.34 kcal/molGoy 1967, as quoted by Cox 1970
0.1195697.7 CH2F2 (g) CF4 (g) → 2 CHF3 (g) ΔrH°(0 K) = -7.5 ± 2.0 kJ/molKlopper 2010a, est unc
0.1085668.3 CHClF2 (g) F (g) → CHF3 (g) Cl (g) ΔrH°(0 K) = -168.79 ± 3.1 kJ/molCsontos 2010
0.0955622.6 CH2F2 (g) → CH3F (g) CHF3 (g) ΔrH°(0 K) = -31.06 ± 2.0 kJ/molCsontos 2010
0.0955622.7 CH2F2 (g) → CH3F (g) CHF3 (g) ΔrH°(0 K) = -29.9 ± 2.0 kJ/molKlopper 2010a, est unc
0.078294.1 [CF3]- (g) H2O2 (g) → [HO2]- (g) CHF3 (g) ΔrG°(298.15 K) = -3.1 ± 1.8 (×3.513) kJ/molBierbaum 1981, note unc4
0.0775696.7 CH3F (g) CF4 (g) → CH2F2 (g) CHF3 (g) ΔrH°(0 K) = 22.4 ± 2.0 kJ/molKlopper 2010a, est unc
0.0665558.8 CHF3 (g) → C (g) + 3 F (g) H (g) ΔrH°(0 K) = 441.98 ± 0.35 kcal/molKarton 2017
0.0615576.3 CHF3 (g) Br2 (g) → CF3Br (g) HBr (g) ΔrH°(298.15 K) = -4.59 ± 0.25 (×1.874) kcal/molCoomber 1967, as quoted by Cox 1970
0.0615745.1 CHF3 (g) Br (g) → CF3 (g) HBr (g) ΔrH°(298.15 K) = 18.89 ± 0.5 kcal/molSyverud 1969, Arthur 1969, Amphlett 1968
0.0525694.9 CHF3 (g) CH4 (g) → CH2F2 (g) CH3F (g) ΔrH°(0 K) = 85.4 ± 2.0 kJ/molKlopper 2010a, est unc
0.0525563.8 CHF3 (g) CH3F (g) → CH4 (g) CF4 (g) ΔrH°(0 K) = -77.9 ± 2.0 kJ/molKlopper 2010a, est unc
0.0405753.1 CHF3 (g) H (g) → CF3 (g) H2 (g) ΔrH°(298.15 K) = 2.09 ± 0.6 kcal/molRuscic 1998, Hranisavljevic 1998a
0.0405569.5 CF3Cl (g) H (g) → CHF3 (g) Cl (g) ΔrH°(0 K) = -79.75 ± 3.1 kJ/molCsontos 2010
0.0395619.7 CH2F2 (g) F (g) → CHF3 (g) H (g) ΔrH°(0 K) = -108.9 ± 2.0 kJ/molKlopper 2010a, est unc
0.0395619.6 CH2F2 (g) F (g) → CHF3 (g) H (g) ΔrH°(0 K) = -106.45 ± 2.0 kJ/molCsontos 2010
0.0375576.1 CHF3 (g) Br2 (g) → CF3Br (g) HBr (g) ΔrH°(750 K) = -4.2 ± 0.6 kcal/molCorbett 1962
0.0365561.4 CHF3 (g) F (g) → CF4 (g) H (g) ΔrH°(0 K) = -101.36 ± 2.0 kJ/molCsontos 2010
0.0365561.5 CHF3 (g) F (g) → CF4 (g) H (g) ΔrH°(0 K) = -101.4 ± 2.0 kJ/molKlopper 2010a, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.