Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
DisileneSiH2SiH2 (g)[SiH2]=[SiH2]287.4278.7± 1.9kJ/mol60.20276 ±
0.00066
15435-77-5*0

Representative Geometry of SiH2SiH2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of SiH2SiH2 (g)

The 20 contributors listed below account only for 49.9% of the provenance of ΔfH° of SiH2SiH2 (g).
A total of 97 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
4.36924.8 SiF4 (g) → Si (g) + 4 F (g) ΔrH°(0 K) = 565.92 ± 0.30 kcal/molKarton 2011
3.46933.1 SiH4 (g) → Si (cr,l) + 2 H2 (g) ΔrH°(298.15 K) = -8.3 ± 0.5 (×1.091) kcal/molGunn 1961, Gurvich TPIS, est unc
3.37001.4 SiH2SiH2 (g, singlet) H2 (g) → SiH3SiH3 (g) ΔrH°(0 K) = -47.68 ± 1.2 kcal/molRuscic W1RO
3.16927.3 Si (cr,l) + 2 F2 (g) → SiF4 (g) ΔrH°(298.15 K) = -1615.78 ± 0.46 kJ/molJohnson 1986
3.06968.1 SiH3SiH3 (g) → 2 Si (cr,l) + 3 H2 (g) ΔrH°(298.15 K) = -19.1 ± 0.6 (×2.044) kcal/molGunn 1961, est unc
3.06871.2 Si (cr,l) → Si (g) ΔrG°(1525 K) = 231.1 ± 2.0 kJ/molBatdorf 1959, 3rd Law
2.87001.2 SiH2SiH2 (g, singlet) H2 (g) → SiH3SiH3 (g) ΔrH°(0 K) = -45.74 ± 1.3 kcal/molRuscic G4
2.56965.7 SiH3SiH3 (g) → 2 Si (g) + 6 H (g) ΔrH°(0 K) = 503.09 ± 0.30 kcal/molKarton 2011, Karton 2007b
2.47001.1 SiH2SiH2 (g, singlet) H2 (g) → SiH3SiH3 (g) ΔrH°(0 K) = -45.65 ± 1.4 kcal/molRuscic G3X
2.47002.4 SiH2SiH2 (g, singlet) SiH4 (g) → SiH3SiH3 (g) SiH2 (g, singlet) ΔrH°(0 K) = 7.48 ± 1.2 kcal/molRuscic W1RO
2.46924.7 SiF4 (g) → Si (g) + 4 F (g) ΔrH°(0 K) = 566.39 ± 0.40 kcal/molKarton 2011
2.17002.2 SiH2SiH2 (g, singlet) SiH4 (g) → SiH3SiH3 (g) SiH2 (g, singlet) ΔrH°(0 K) = 7.87 ± 1.3 kcal/molRuscic G4
2.06992.1 SiH2SiH2 (g, singlet) → [SiH2SiH2]+ (g) ΔrH°(0 K) = 8.09 ± 0.03 eVRuscic 1991e
2.06924.10 SiF4 (g) → Si (g) + 4 F (g) ΔrH°(0 K) = 565.89 ± 0.44 kcal/molMartin 1999d, note unc
1.97001.3 SiH2SiH2 (g, singlet) H2 (g) → SiH3SiH3 (g) ΔrH°(0 K) = -45.69 ± 1.6 kcal/molRuscic CBS-n
1.87002.1 SiH2SiH2 (g, singlet) SiH4 (g) → SiH3SiH3 (g) SiH2 (g, singlet) ΔrH°(0 K) = 7.92 ± 1.4 kcal/molRuscic G3X
1.76871.3 Si (cr,l) → Si (g) ΔrH°(1932 K) = 393.1 ± 2.5 (×1.044) kJ/molDrowart 1960, 2nd Law, Gurvich TPIS
1.77004.5 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.128 ± 0.040 eVRuscic W1RO
1.66905.6 SiO2 (cr,l) Si (cr,l) → 2 SiO (g) ΔrG°(1618 K) = 37.94 ± 0.29 (×1.576) kcal/molRamstad 1961, 3rd Law, Gurvich TPIS
1.56944.6 SiH2 (g, singlet) → Si (g) + 2 H (g) ΔrH°(0 K) = 145.8 ± 0.4 kcal/molFeller 1999a

Top 10 species with enthalpies of formation correlated to the ΔfH° of SiH2SiH2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 DisileneSiH2SiH2 (g, singlet)[SiH2]=[SiH2]287.4278.7± 1.9kJ/mol60.20276 ±
0.00066
15435-77-5*2
85.0 SilylsilyleneSiH3SiH (g, singlet)[SiH3][SiH]315.9308.0± 2.0kJ/mol60.20276 ±
0.00066
50420-90-1*2
85.0 SilylsilyleneSiH3SiH (g)[SiH3][SiH]315.9308.0± 2.0kJ/mol60.20276 ±
0.00066
50420-90-1*0
81.6 mu-HydrotrihydrodisiliconSiH2(HSiH) (g)[SiH2]([H-]1)[SiH+]1316.4306.4± 2.2kJ/mol60.20276 ±
0.00066
497967-56-3*0
73.2 DisileneSiH2SiH2 (g, triplet)[SiH2]=[SiH2]392.0383.5± 2.3kJ/mol60.20276 ±
0.00066
15435-77-5*1
71.8 Di-mu-hydrodihydrodisiliconHSi(HSiHH) (g, trans)[SiH+]([H-]1)[H-][SiH+]1373.3362.9± 2.4kJ/mol60.20276 ±
0.00066
129970-82-7*1
71.8 Di-mu-hydrodihydrodisiliconHSi(HSiHH) (g)[SiH+]([H-]1)[H-][SiH+]1373.3363.0± 2.4kJ/mol60.20276 ±
0.00066
129970-82-7*0
71.8 Di-mu-hydrodihydrodisiliconHSi(HSiHH) (g, trans-singlet)[SiH+]([H-]1)[H-][SiH+]1373.3362.9± 2.4kJ/mol60.20276 ±
0.00066
129970-82-7*12
70.1 Disilene cation[SiH2SiH2]+ (g)[SiH2]=[SiH2+]1068.21059.1± 2.0kJ/mol60.20221 ±
0.00066
108492-63-3*0
69.0 DisilanylSiH3SiH2 (g)[SiH3][SiH2]241.3229.3± 1.6kJ/mol61.21070 ±
0.00069
73151-72-1*0

Most Influential reactions involving SiH2SiH2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0006996.1 SiH2SiH2 (g) → SiH2SiH2 (g, singlet) ΔrH°(0 K) = 0 ± 0 cm-1Ruscic W1RO, Ruscic G4, Ruscic CBS-n, Ruscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.