Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Iodine monobromide | IBr (g) | | 49.719 | 40.772 | ± 0.067 | kJ/mol | 206.8085 ± 0.0010 | 7789-33-5*0 |
|
Representative Geometry of IBr (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of IBr (g)The 9 contributors listed below account for 99.1% of the provenance of ΔfH° of IBr (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 67.2 | 951.2 | Br2 (cr,l) → Br2 (g)  | ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/mol | Hildenbrand 1958 | 17.3 | 1119.2 | IBr (g) → I (g) + Br (g)  | ΔrH°(0 K) = 14657 ± 4 cm-1 | Brown 1932a, Eberhardt 1959, apud Gurvich TPIS | 11.0 | 1119.1 | IBr (g) → I (g) + Br (g)  | ΔrH°(0 K) = 14660 ± 5 cm-1 | Brown 1932a | 1.3 | 1120.1 | IBr (g) → 1/2 I2 (g) + 1/2 Br2 (g)  | ΔrG°(418.5 K) = 8.38 ± 0.17 kJ/mol | McMorris 1931, 3rd Law | 1.1 | 951.3 | Br2 (cr,l) → Br2 (g)  | ΔrH°(331 K) = 7.28 ± 0.07 (×2.954) kcal/mol | Andrews 1849 | 0.2 | 999.1 | Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq)  | ΔrH°(298.15 K) = -91.29 ± 0.40 (×3.83) kJ/mol | Johnson 1963, as quoted by CODATA Key Vals | 0.2 | 999.2 | Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq)  | ΔrH°(298.15 K) = -91.29 ± 0.80 (×1.915) kJ/mol | Sunner 1964, as quoted by CODATA Key Vals | 0.2 | 979.1 | 1/2 H2 (g) + 1/2 Br2 (cr,l) → HBr (aq)  | ΔrG°(298.15 K) = -102.81 ± 0.80 kJ/mol | Jones 1934, as quoted by CODATA Key Vals | 0.1 | 999.3 | Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq)  | ΔrH°(298.15 K) = -91.55 ± 2.00 kJ/mol | Thomsen 1882, as quoted by CODATA Key Vals |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of IBr (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 83.5 | Bromine atom | Br (g) | | 117.917 | 111.855 | ± 0.056 | kJ/mol | 79.90400 ± 0.00100 | 10097-32-2*0 | 83.5 | Bromine atom | Br (g, 2P3/2) | | 117.917 | 111.855 | ± 0.056 | kJ/mol | 79.90400 ± 0.00100 | 10097-32-2*1 | 83.5 | Bromine atom | Br (g, 2P1/2) | | 162.002 | 155.939 | ± 0.056 | kJ/mol | 79.90400 ± 0.00100 | 10097-32-2*2 | 83.5 | Dibromine | Br2 (g) | | 45.68 | 30.89 | ± 0.12 | kJ/mol | 159.8080 ± 0.0020 | 7726-95-6*0 | 83.5 | Bromide | Br- (g) | | -206.619 | -212.682 | ± 0.056 | kJ/mol | 79.90455 ± 0.00100 | 24959-67-9*0 | 83.1 | Bromanylium | Br+ (g) | | 1257.778 | 1251.715 | ± 0.057 | kJ/mol | 79.90345 ± 0.00100 | 22541-56-6*0 | 78.3 | Bromochlorane | BrCl (g) | | 21.882 | 14.439 | ± 0.060 | kJ/mol | 115.3567 ± 0.0013 | 13863-41-7*0 | 41.1 | Diatomic bromine cation | [Br2]+ (g) | | 1060.32 | 1045.37 | ± 0.23 | kJ/mol | 159.8075 ± 0.0020 | 12595-71-0*0 | 29.3 | Hydrogen bromide | HBr (g) | | -27.60 | -35.45 | ± 0.14 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*0 | 29.3 | Bromoniumyl | [HBr]+ (g) | | 1098.07 | 1090.22 | ± 0.14 | kJ/mol | 80.9114 ± 0.0010 | 12258-64-9*0 |
|
Most Influential reactions involving IBr (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.927 | 4732.1 | CF3Br (g) + I2 (g) → CF3I (g) + IBr (g)  | ΔrH°(298.15 K) = 9.55 ± 0.06 kcal/mol | Lord 1967, as quoted by Cox 1970 | 0.576 | 1119.2 | IBr (g) → I (g) + Br (g)  | ΔrH°(0 K) = 14657 ± 4 cm-1 | Brown 1932a, Eberhardt 1959, apud Gurvich TPIS | 0.368 | 1119.1 | IBr (g) → I (g) + Br (g)  | ΔrH°(0 K) = 14660 ± 5 cm-1 | Brown 1932a | 0.045 | 1120.1 | IBr (g) → 1/2 I2 (g) + 1/2 Br2 (g)  | ΔrG°(418.5 K) = 8.38 ± 0.17 kJ/mol | McMorris 1931, 3rd Law | 0.038 | 1134.1 | IO (g) + Br (g) → IBr (g) + O (g)  | ΔrH°(0 K) = 11.70 ± 1.0 kcal/mol | Grant 2010 | 0.002 | 1119.3 | IBr (g) → I (g) + Br (g)  | ΔrH°(0 K) = 14600 ± 60 cm-1 | Badger 1931 | 0.002 | 1120.2 | IBr (g) → 1/2 I2 (g) + 1/2 Br2 (g)  | ΔrH°(418.5 K) = 5.30 ± 0.75 kJ/mol | McMorris 1931, 2nd Law | 0.002 | 4899.1 | CF3I (g) + Br (g) → CF3 (g) + IBr (g)  | ΔrH°(298.15 K) = 9.8 ± 1.1 (×2.089) kcal/mol | Ruscic 1998, Okafo 1975, Okafo 1975a | 0.001 | 1120.5 | IBr (g) → 1/2 I2 (g) + 1/2 Br2 (g)  | ΔrH°(298.15 K) = 6.8 ± 1 kJ/mol | Blair 1933, apud Gurvich TPIS | 0.000 | 1120.3 | IBr (g) → 1/2 I2 (g) + 1/2 Br2 (g)  | ΔrH°(298.15 K) = 7.1 ± 1.2 (×1.022) kJ/mol | Muller 1926, apud Gurvich TPIS | 0.000 | 1120.4 | IBr (g) → 1/2 I2 (g) + 1/2 Br2 (g)  | ΔrH°(298.15 K) = 3.7 ± 3 kJ/mol | Bodenstein 1926, apud Gurvich TPIS | 0.000 | 1119.4 | IBr (g) → I (g) + Br (g)  | ΔrH°(0 K) = 41.79 ± 1.0 kcal/mol | Grant 2010 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|