Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Carbon anion | C- (g) | | 589.621 | 594.768 | ± 0.046 | kJ/mol | 12.01125 ± 0.00080 | 14337-00-9*0 |
|
Representative Geometry of C- (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of C- (g)The 9 contributors listed below account for 26.0% of the provenance of ΔfH° of C- (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 7.4 | 1843.2 | CO (g) → C+ (g) + O (g)  | ΔrH°(0 K) = 22.3713 ± 0.0015 eV | Ng 2007 | 5.6 | 1936.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 3.8 | 120.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 1.8 | 1795.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 1.8 | 1851.5 | C (graphite) + CO2 (g) → 2 CO (g)  | ΔrG°(1165 K) = -33.545 ± 0.058 kJ/mol | Smith 1946, note COf, 3rd Law | 1.4 | 1830.5 | CO (g) → C (g) + O (g)  | ΔrH°(0 K) = 89632 ± 27 cm-1 | Ruscic 2003 | 1.3 | 5219.7 | C6H6 (g) → 6 C (g) + 6 H (g)  | ΔrH°(0 K) = 5463.0 ± 1.8 kJ/mol | Harding 2011 | 1.2 | 1828.3 | CO (g) → C (g) + O (g)  | ΔrH°(0 K) = 89620 ± 29 cm-1 | Douglas 1955, Schmid 1935, note COj | 1.1 | 6712.1 | C60 (cr,l) + 60 O2 (g) → 60 CO2 (g)  | ΔrH°(298.15 K) = -25965 ± 20 kJ/mol | Kolesov 1996, est unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of C- (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.6 | Carbon | C (g) | | 711.398 | 716.883 | ± 0.045 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*0 | 99.6 | Carbon | C (g, triplet) | | 711.398 | 716.883 | ± 0.045 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*1 | 99.6 | Carbon | C (g, singlet) | | 833.329 | 838.475 | ± 0.045 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*2 | 99.6 | Carbon | C (g, quintuplet) | | 1114.961 | 1120.107 | ± 0.045 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*3 | 99.6 | Carbon cation | C+ (g) | | 1797.851 | 1803.449 | ± 0.045 | kJ/mol | 12.01015 ± 0.00080 | 14067-05-1*0 | 86.2 | Methyliumylidene | [CH]+ (g) | | 1619.755 | 1623.099 | ± 0.052 | kJ/mol | 13.01809 ± 0.00080 | 24361-82-8*0 | 60.7 | Acetylene | HCCH (g) | | 228.84 | 228.28 | ± 0.13 | kJ/mol | 26.0373 ± 0.0016 | 74-86-2*0 | 60.7 | Acetylene cation | [HCCH]+ (g) | | 1328.85 | 1328.18 | ± 0.13 | kJ/mol | 26.0367 ± 0.0016 | 25641-79-6*0 | 56.9 | Ethynyl | CCH (g) | | 563.88 | 567.99 | ± 0.14 | kJ/mol | 25.0293 ± 0.0016 | 2122-48-7*0 | 49.1 | Ethynylium | [CCH]+ (g) | | 1687.59 | 1690.93 | ± 0.16 | kJ/mol | 25.0288 ± 0.0016 | 16456-59-0*0 |
|
Most Influential reactions involving C- (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.992 | 1790.1 | C- (g) → C (g)  | ΔrH°(0 K) = 10179.67 ± 0.30 cm-1 | Scheer 1998d, Scheer 1998, note unc | 0.678 | 2012.1 | [CH]- (g) → C- (g) + H (g)  | ΔrH°(0 K) = 78.83 ± 0.06 kcal/mol | Feller 2016, note unc2 | 0.122 | 1994.1 | [CH2]- (g) → C- (g) + 2 H (g)  | ΔrH°(0 K) = 165.69 ± 0.12 kcal/mol | Feller 2016, note unc2 | 0.082 | 1957.1 | [CH3]- (g) → C- (g) + 3 H (g)  | ΔrH°(0 K) = 262.0 ± 0.2 kcal/mol | Feller 2016, note unc2 | 0.003 | 1864.1 | [C2]- (g) → C (g) + C- (g)  | ΔrH°(0 K) = 188.7 ± 1.5 (×1.091) kcal/mol | Sordo 2001, Chan 2004 | 0.002 | 1790.2 | C- (g) → C (g)  | ΔrH°(0 K) = 1.2629 ± 0.0003 (×2.594) eV | Feldmann 1977 | 0.002 | 1790.3 | C- (g) → C (g)  | ΔrH°(0 K) = 1.2621 ± 0.0008 eV | Feller 2016, note unc2 | 0.001 | 1790.4 | C- (g) → C (g)  | ΔrH°(0 K) = 1.26273 ± 0.00088 eV | Klopper 2010 | 0.001 | 1790.5 | C- (g) → C (g)  | ΔrH°(0 K) = 1.26288 ± 0.00100 eV | Oliveira 1999, Martin 1998a, est unc | 0.000 | 1790.6 | C- (g) → C (g)  | ΔrH°(0 K) = 1.265 ± 0.003 eV | Cleland 2011 | 0.000 | 2354.1 | [CN]- (g) → C- (g) + N (g)  | ΔrH°(0 K) = 10.28 ± 0.1 eV | Polak 2002, est unc | 0.000 | 2094.1 | CH2CH2 (g) → [CH4]+ (g) + C- (g)  | ΔrH°(0 K) = 17.40 ± 0.16 eV | Plessis 1987 | 0.000 | 2354.2 | [CN]- (g) → C- (g) + N (g)  | ΔrH°(0 K) = 10.17 ± 0.1 (×1.576) eV | Polak 2002, est unc | 0.000 | 1790.7 | C- (g) → C (g)  | ΔrH°(0 K) = 1.262 ± 0.010 eV | Gdanitz 1999, est unc | 0.000 | 1790.13 | C- (g) → C (g)  | ΔrH°(0 K) = 1.252 ± 0.050 eV | Ruscic W1RO |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|