Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Formic acid | HC(O)OH (g, anti) | | -354.75 | -361.85 | ± 0.38 | kJ/mol | 46.0254 ± 0.0010 | 64-18-6*2 |
|
Representative Geometry of HC(O)OH (g, anti) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HC(O)OH (g, anti)The 9 contributors listed below account for 69.7% of the provenance of ΔfH° of HC(O)OH (g, anti).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 52.2 | 3804.1 | HC(O)OH (g, syn) → HC(O)OH (g, anti)  | ΔrH°(0 K) = 1365 ± 30 cm-1 | Hocking 1976, Gurvich TPIS | 5.1 | 3811.2 | HC(O)OH (cr,l) + 1/2 O2 (g) → CO2 (g) + H2O (cr,l)  | ΔrH°(298.15 K) = -60.807 ± 0.074 kcal/mol | Lebedeva 1964 | 3.5 | 3811.1 | HC(O)OH (cr,l) + 1/2 O2 (g) → CO2 (g) + H2O (cr,l)  | ΔrH°(298.15 K) = -60.851 ± 0.089 kcal/mol | Sinke 1959 | 3.4 | 3812.1 | HC(O)OH (cr,l) → HC(O)OH (g)  | ΔrH°(298.15 K) = 46.30 ± 0.23 kJ/mol | Majer 1985 | 1.2 | 2636.2 | HC(O)OH (g, syn) → [HCO]+ (g) + OH (g)  | ΔrH°(0 K) = 12.81 ± 0.01 eV | Traeger 1985, AE corr | 1.1 | 3812.2 | HC(O)OH (cr,l) → HC(O)OH (g)  | ΔrH°(298.15 K) = 46.15 ± 0.40 kJ/mol | NBS Tables 1989 | 1.1 | 3810.2 | HC(O)OH (g) → [HCO]+ (g) + OH (g)  | ΔrH°(0 K) = 1235.7 ± 1.0 kJ/mol | Shuman 2010a, Bomble 2006 | 0.9 | 3809.8 | HC(O)OH (g, anti) + CH4 (g) → CH2O (g) + CH3OH (g)  | ΔrH°(0 K) = 29.70 ± 0.9 kcal/mol | Ruscic W1RO | 0.8 | 4047.8 | CH3C(O)OH (g, syn) + HC(O)OH (g, anti) → CH3C(O)OH (g, anti) + HC(O)OH (g, syn)  | ΔrH°(0 K) = 346 ± 200 cm-1 | Ruscic W1RO |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HC(O)OH (g, anti) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 53.8 | Formic acid | HC(O)OH (g, syn) | | -371.09 | -378.40 | ± 0.22 | kJ/mol | 46.0254 ± 0.0010 | 64-18-6*1 | 53.8 | Formic acid | HC(O)OH (g) | | -371.09 | -378.38 | ± 0.22 | kJ/mol | 46.0254 ± 0.0010 | 64-18-6*0 | 46.4 | Formic acid cation | [HC(O)OH]+ (g, syn) | | 721.89 | 714.81 | ± 0.26 | kJ/mol | 46.0248 ± 0.0010 | 50614-05-6*1 | 46.4 | Formic acid cation | [HC(O)OH]+ (g) | | 721.89 | 715.36 | ± 0.26 | kJ/mol | 46.0248 ± 0.0010 | 50614-05-6*0 | 36.4 | Formic acid | HC(O)OH (cr,l) | | -431.54 | -424.71 | ± 0.20 | kJ/mol | 46.0254 ± 0.0010 | 64-18-6*500 | 14.3 | Carbonic acid | C(O)(OH)2 (g) | | -602.73 | -612.04 | ± 0.75 | kJ/mol | 62.0248 ± 0.0012 | 463-79-6*0 | 14.3 | Carbonic acid | C(O)(OH)2 (g, cis-cis) | | -602.73 | -612.90 | ± 0.75 | kJ/mol | 62.0248 ± 0.0012 | 463-79-6*1 | 13.5 | Carbonic acid | C(O)(OH)2 (g, cis-trans) | | -596.87 | -606.98 | ± 0.83 | kJ/mol | 62.0248 ± 0.0012 | 463-79-6*2 | 13.4 | Hydroxyoxomethylium | [HOCO]+ (g) | | 600.66 | 597.57 | ± 0.44 | kJ/mol | 45.0169 ± 0.0010 | 638-71-1*0 | 13.2 | Methyl formate | HC(O)OCH3 (g, anti) | | -326.7 | -339.1 | ± 1.1 | kJ/mol | 60.0520 ± 0.0017 | 107-31-3*2 |
|
Most Influential reactions involving HC(O)OH (g, anti)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.775 | 3804.1 | HC(O)OH (g, syn) → HC(O)OH (g, anti)  | ΔrH°(0 K) = 1365 ± 30 cm-1 | Hocking 1976, Gurvich TPIS | 0.145 | 3795.7 | [HC(O)OH]- (g, anti) → HC(O)OH (g, anti)  | ΔrH°(0 K) = -1.183 ± 0.050 eV | Ruscic W1RO | 0.119 | 4071.5 | CH3C(O)OCH3 (g, anti) + HC(O)OH (g, anti) → CH3C(O)OH (g, anti) + HC(O)OCH3 (g, anti)  | ΔrH°(0 K) = -1.61 ± 0.85 kcal/mol | Ruscic W1RO | 0.106 | 4071.2 | CH3C(O)OCH3 (g, anti) + HC(O)OH (g, anti) → CH3C(O)OH (g, anti) + HC(O)OCH3 (g, anti)  | ΔrH°(0 K) = -1.38 ± 0.90 kcal/mol | Ruscic G4 | 0.106 | 4071.4 | CH3C(O)OCH3 (g, anti) + HC(O)OH (g, anti) → CH3C(O)OH (g, anti) + HC(O)OCH3 (g, anti)  | ΔrH°(0 K) = -1.54 ± 0.90 kcal/mol | Ruscic CBS-n | 0.106 | 4071.1 | CH3C(O)OCH3 (g, anti) + HC(O)OH (g, anti) → CH3C(O)OH (g, anti) + HC(O)OCH3 (g, anti)  | ΔrH°(0 K) = -1.37 ± 0.90 kcal/mol | Ruscic G3X | 0.097 | 3795.4 | [HC(O)OH]- (g, anti) → HC(O)OH (g, anti)  | ΔrH°(0 K) = -1.161 ± 0.061 eV | Ruscic G4 | 0.097 | 3793.8 | HC(O)OH (g, anti) → [HC(O)OH]+ (g, anti)  | ΔrH°(0 K) = 11.188 ± 0.040 eV | Ruscic W1RO | 0.086 | 4071.3 | CH3C(O)OCH3 (g, anti) + HC(O)OH (g, anti) → CH3C(O)OH (g, anti) + HC(O)OCH3 (g, anti)  | ΔrH°(0 K) = -1.47 ± 1.00 kcal/mol | Ruscic CBS-n | 0.050 | 3795.3 | [HC(O)OH]- (g, anti) → HC(O)OH (g, anti)  | ΔrH°(0 K) = -1.217 ± 0.085 eV | Ruscic G3X | 0.049 | 4102.5 | HC(O)OH (g, anti) + CH3CH2OH (g) → HC(O)OCH2CH3 (g, anti) + H2O (g)  | ΔrH°(0 K) = -4.88 ± 1.50 kcal/mol | Ruscic W1RO | 0.043 | 4102.2 | HC(O)OH (g, anti) + CH3CH2OH (g) → HC(O)OCH2CH3 (g, anti) + H2O (g)  | ΔrH°(0 K) = -4.91 ± 1.60 kcal/mol | Ruscic G4 | 0.043 | 4102.4 | HC(O)OH (g, anti) + CH3CH2OH (g) → HC(O)OCH2CH3 (g, anti) + H2O (g)  | ΔrH°(0 K) = -5.37 ± 1.60 kcal/mol | Ruscic CBS-n | 0.043 | 3795.6 | [HC(O)OH]- (g, anti) → HC(O)OH (g, anti)  | ΔrH°(0 K) = -1.190 ± 0.092 eV | Ruscic CBS-n | 0.041 | 4047.8 | CH3C(O)OH (g, syn) + HC(O)OH (g, anti) → CH3C(O)OH (g, anti) + HC(O)OH (g, syn)  | ΔrH°(0 K) = 346 ± 200 cm-1 | Ruscic W1RO | 0.037 | 4047.7 | CH3C(O)OH (g, syn) + HC(O)OH (g, anti) → CH3C(O)OH (g, anti) + HC(O)OH (g, syn)  | ΔrH°(0 K) = 355 ± 210 cm-1 | Ruscic CBS-n | 0.037 | 4047.4 | CH3C(O)OH (g, syn) + HC(O)OH (g, anti) → CH3C(O)OH (g, anti) + HC(O)OH (g, syn)  | ΔrH°(0 K) = 395 ± 210 cm-1 | Ruscic G4 | 0.037 | 4102.1 | HC(O)OH (g, anti) + CH3CH2OH (g) → HC(O)OCH2CH3 (g, anti) + H2O (g)  | ΔrH°(0 K) = -5.23 ± 1.72 kcal/mol | Ruscic G3X | 0.032 | 4047.3 | CH3C(O)OH (g, syn) + HC(O)OH (g, anti) → CH3C(O)OH (g, anti) + HC(O)OH (g, syn)  | ΔrH°(0 K) = 412 ± 225 cm-1 | Ruscic G3X | 0.029 | 3793.4 | HC(O)OH (g, anti) → [HC(O)OH]+ (g, anti)  | ΔrH°(0 K) = 11.143 ± 0.073 eV | Ruscic G4 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|