Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Ammonium chloride | (NH4)Cl (cr) | | -311.556 | -314.718 | ± 0.063 | kJ/mol | 53.49120 ± 0.00095 | 12125-02-9*510 |
|
Top contributors to the provenance of ΔfH° of (NH4)Cl (cr)The 9 contributors listed below account for 71.3% of the provenance of ΔfH° of (NH4)Cl (cr).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 25.4 | 1449.1 | NH3 (g) → NH3 (aq, undissoc)  | ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/mol | Vanderzee 1972 | 9.1 | 1392.1 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/mol | Larson 1923, Vanderzee 1972 | 8.5 | 1459.5 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrG°(298.15 K) = -7.092 ± 0.020 kJ/mol | CODATA Key Vals | 6.3 | 1449.2 | NH3 (g) → NH3 (aq, undissoc)  | ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/mol | Stavaley 1971, Vanderzee 1972, as quoted by CODATA Key Vals | 6.3 | 1449.7 | NH3 (g) → NH3 (aq, undissoc)  | ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/mol | Staveley 1971, Vanderzee 1972 | 4.6 | 1391.5 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.875 ± 0.014 kcal/mol | Schulz 1966, Vanderzee 1972 | 4.4 | 1455.1 | [NH4]+ (aq) → NH3 (aq, undissoc) + H+ (aq)  | ΔrG°(298.15 K) = 52.771 ± 0.020 kJ/mol | Bates 1950, Bates 1949, Bates 1943, Bates 1946 | 3.3 | 1458.1 | N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq)  | ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/mol | Vanderzee 1972c | 2.8 | 693.1 | HCl (g) → HCl (aq)  | ΔrH°(298.15 K) = -17.884 ± 0.010 kcal/mol | Gunn 1963, Gunn 1964, as quoted by CODATA Key Vals, Vanderzee 1963 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of (NH4)Cl (cr) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 88.0 | Ammonium | [NH4]+ (aq) | | | -133.075 | ± 0.056 | kJ/mol | 18.03795 ± 0.00029 | 14798-03-9*800 | 83.3 | Ammonia | NH3 (aq, undissoc) | | | -80.885 | ± 0.053 | kJ/mol | 17.03056 ± 0.00022 | 7664-41-7*1000 | 75.9 | Ammonium hydroxide | NH4OH (aq, undissoc) | | | -366.712 | ± 0.061 | kJ/mol | 35.04584 ± 0.00047 | 1336-21-6*1000 | 43.7 | Ammonia | NH3 (g) | | -38.565 | -45.558 | ± 0.029 | kJ/mol | 17.03056 ± 0.00022 | 7664-41-7*0 | 43.7 | Azanylium | [NH3]+ (g) | | 944.272 | 937.317 | ± 0.029 | kJ/mol | 17.03001 ± 0.00022 | 19496-55-0*0 | 34.2 | Hydrogen chloride | HCl (aq) | | | -166.992 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*800 | 34.2 | Chloride | Cl- (aq) | | | -166.992 | ± 0.023 | kJ/mol | 35.45325 ± 0.00090 | 16887-00-6*800 | 32.2 | Hydrogen chloride | HCl (aq, 2000 H2O) | | | -166.683 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*841 | 32.1 | Hydrogen chloride | HCl (aq, 2439 H2O) | | | -166.713 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*951 | 32.1 | Hydrogen chloride | HCl (aq, 1000 H2O) | | | -166.565 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*839 |
|
Most Influential reactions involving (NH4)Cl (cr)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.951 | 1459.5 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrG°(298.15 K) = -7.092 ± 0.020 kJ/mol | CODATA Key Vals | 0.022 | 1459.4 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrH°(298.15 K) = 3.533 ± 0.015 (×2.089) kcal/mol | Parker 1965, as quoted by CODATA Key Vals | 0.016 | 1451.6 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.20 ± 0.06 (×1.719) kcal/mol | Braune 1928, JANAF 3, 3rd Law | 0.013 | 1459.1 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrH°(298.15 K) = 3.542 ± 0.005 (×8.175) kcal/mol | Vanderzee 1972a | 0.010 | 1451.7 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.43 ± 0.09 (×1.445) kcal/mol | Rodebush 1929, JANAF 3, 2nd Law | 0.005 | 1452.7 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrG°(556.8 K) = 21.057 ± 0.618 (×1.215) kJ/mol | Markowitz 1962, 3rd Law | 0.005 | 1452.4 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(335 K) = 175.825 ± 0.759 kJ/mol | Wagner 1961, 2nd Law | 0.004 | 1451.2 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrG°(587.4 K) = 3.132 ± 0.028 (×6.874) kcal/mol | Smith 1914, 3rd Law | 0.003 | 1451.4 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.14 ± 0.22 kcal/mol | Smits 1928, JANAF 3, 3rd Law | 0.003 | 1451.3 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.16 ± 0.22 kcal/mol | Smits 1928, JANAF 3, 2nd Law | 0.003 | 1451.8 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.08 ± 0.09 (×2.484) kcal/mol | Rodebush 1929, JANAF 3, 3rd Law | 0.003 | 1459.3 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrH°(298.15 K) = 14.98 ± 0.20 (×1.646) kJ/mol | Makarov 1967, as quoted by CODATA Key Vals | 0.003 | 1459.2 | (NH4)Cl (cr) → [NH4]+ (aq) + Cl- (aq)  | ΔrH°(298.15 K) = 14.979 ± 0.080 (×4.177) kJ/mol | Tsvetkov 1969, as quoted by CODATA Key Vals | 0.002 | 1451.5 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(298.15 K) = 42.02 ± 0.06 (×4.757) kcal/mol | Braune 1928, JANAF 3, 2nd Law | 0.000 | 1451.1 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(587.4 K) = 39.54 ± 0.58 kcal/mol | Smith 1914, 2nd Law | 0.000 | 1452.8 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(556.8 K) = 162.04 ± 4.28 kJ/mol | Markowitz 1962, 2nd Law | 0.000 | 1451.9 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrG°(603 K) = 9.52 ± 5 kJ/mol | Johnson 1909, 3rd Law, est unc | 0.000 | 1451.10 | (NH4)Cl (cr) → NH3 (g) + HCl (g)  | ΔrH°(603 K) = 158.7 ± 10 kJ/mol | Johnson 1909, 2nd Law, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|