Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Fluorine atom cation | F+ (g) | | 1758.306 | 1760.604 | ± 0.048 | kJ/mol | 18.99785462 ± 0.00000050 | 14701-13-4*0 |
|
Representative Geometry of F+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of F+ (g)The 20 contributors listed below account only for 63.5% of the provenance of ΔfH° of F+ (g). A total of 75 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of F+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.5 | Fluorine atom | F (g) | | 77.258 | 79.364 | ± 0.048 | kJ/mol | 18.99840320 ± 0.00000050 | 14762-94-8*0 | 99.5 | Fluorine atom | F (g, 2P3/2) | | 77.258 | 79.043 | ± 0.048 | kJ/mol | 18.99840320 ± 0.00000050 | 14762-94-8*1 | 99.5 | Fluorine atom | F (g, 2P1/2) | | 82.093 | 83.878 | ± 0.048 | kJ/mol | 18.99840320 ± 0.00000050 | 14762-94-8*2 | 99.5 | Fluoride | F- (g) | | -250.907 | -249.122 | ± 0.048 | kJ/mol | 18.99895178 ± 0.00000050 | 16984-48-8*0 | 98.2 | Hydrogen fluoride | HF (g) | | -272.674 | -272.721 | ± 0.049 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*0 | 95.4 | Fluoroniumyl ion | [HF]+ (g) | | 1275.561 | 1275.793 | ± 0.050 | kJ/mol | 20.005795 ± 0.000070 | 12381-92-9*0 | 87.6 | Chlorine fluoride | ClF (g) | | -55.617 | -55.712 | ± 0.055 | kJ/mol | 54.45110 ± 0.00090 | 7790-89-8*0 | 38.8 | Oxygen difluoride | FOF (g) | | 26.81 | 24.56 | ± 0.24 | kJ/mol | 53.99621 ± 0.00030 | 7783-41-7*0 | 38.1 | Tetrafluoromethane | CF4 (g) | | -927.50 | -933.47 | ± 0.25 | kJ/mol | 88.00431 ± 0.00080 | 75-73-0*0 | 33.5 | Fluorooxidanyl | FO (g) | | 110.27 | 110.89 | ± 0.15 | kJ/mol | 34.99780 ± 0.00030 | 12061-70-0*0 |
|
Most Influential reactions involving F+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.872 | 414.1 | F (g) → F+ (g)  | ΔrH°(0 K) = 140524.5 ± 0.4 cm-1 | Liden 1949, Moore 1970 | 0.115 | 414.3 | F (g) → F+ (g)  | ΔrH°(0 K) = 140525.6 ± 1.1 cm-1 | Biemont 1999 | 0.057 | 420.1 | F2 (g) → F+ (g) + F- (g)  | ΔrH°(0 K) = 126042 ± 8 (×4.177) cm-1 | Yang 2005 | 0.057 | 529.4 | [FFH]+ (g) → HF (g) + F+ (g)  | ΔrH°(0 K) = 74.19 ± 1.50 kcal/mol | Ruscic W1RO | 0.050 | 529.3 | [FFH]+ (g) → HF (g) + F+ (g)  | ΔrH°(0 K) = 74.42 ± 1.60 kcal/mol | Ruscic CBS-n | 0.050 | 529.1 | [FFH]+ (g) → HF (g) + F+ (g)  | ΔrH°(0 K) = 73.13 ± 1.60 kcal/mol | Ruscic G4 | 0.027 | 529.2 | [FFH]+ (g) → HF (g) + F+ (g)  | ΔrH°(0 K) = 73.98 ± 2.16 kcal/mol | Ruscic CBS-n | 0.009 | 420.2 | F2 (g) → F+ (g) + F- (g)  | ΔrH°(0 K) = 15.62 ± 0.01 eV | Berkowitz 1971a, Berkowitz 1971, Berkowitz 1973, note F2 | 0.009 | 414.2 | F (g) → F+ (g)  | ΔrH°(0 K) = 140525.3 ± 3.9 cm-1 | Huffman 1967 | 0.003 | 421.1 | F2 (g) → F (g) + F+ (g)  | ΔrH°(0 K) = 19.017 ± 0.016 eV | Berkowitz 1971, Berkowitz 1973, Berkowitz 1971a, note F2 | 0.002 | 414.9 | F (g) → F+ (g)  | ΔrH°(0 K) = 17.42255 ± 0.00088 eV | Klopper 2010 | 0.001 | 529.5 | [FFH]+ (g) → HF (g) + F+ (g)  | ΔrH°(0 K) = 276.76 ± 16 (×2.181) kJ/mol | Li 2000, est unc | 0.001 | 420.4 | F2 (g) → F+ (g) + F- (g)  | ΔrH°(0 K) = 15.635 ± 0.030 eV | Chupka 1971b | 0.000 | 420.3 | F2 (g) → F+ (g) + F- (g)  | ΔrH°(0 K) = 15.63 ± 0.04 eV | Chupka 1971a | 0.000 | 421.2 | F2 (g) → F (g) + F+ (g)  | ΔrH°(0 K) = 19.03 ± 0.05 eV | Dibeler 1969, note F2 | 0.000 | 414.8 | F (g) → F+ (g)  | ΔrH°(0 K) = 17.422 ± 0.032 eV | Parthiban 2001 | 0.000 | 414.7 | F (g) → F+ (g)  | ΔrH°(0 K) = 17.421 ± 0.040 eV | Parthiban 2001 | 0.000 | 414.6 | F (g) → F+ (g)  | ΔrH°(0 K) = 17.411 ± 0.040 eV | Parthiban 2001, Ruscic W1RO | 0.000 | 414.5 | F (g) → F+ (g)  | ΔrH°(0 K) = 17.47 ± 0.02 (×2.378) eV | de Leeuw 1978 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov |
4
|
|
P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017)
[DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
|
5
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017)
[DOI: 10.1021/acs.jpca.7b06017]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|