Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Hydroxymethyl | CH2OH (g) | | -10.44 | -16.75 | ± 0.28 | kJ/mol | 31.03392 ± 0.00088 | 2597-43-5*0 |
|
Representative Geometry of CH2OH (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH2OH (g)The 20 contributors listed below account only for 68.9% of the provenance of ΔfH° of CH2OH (g). A total of 116 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 10.9 | 2453.3 | CH2OH (g) → [CH2OH]+ (g)  | ΔrH°(0 K) = 7.553 ± 0.006 (×1.114) eV | Ruscic 1991, Ruscic 1991a, Litorja 1998a | 10.7 | 2459.10 | CH2OH (g) → CH2O (g) + H (g)  | ΔrH°(0 K) = 121.88 ± 0.46 (×1.719) kJ/mol | Marenich 2003b, note unc2 | 9.6 | 2457.9 | CH3OH (g) → CH2OH (g) + H (g)  | ΔrH°(0 K) = 94.59 ± 0.17 kcal/mol | Nguyen 2015a | 9.5 | 2459.1 | CH2OH (g) → CH2O (g) + H (g)  | ΔrH°(0 K) = 10160 ± 70 cm-1 | Ryazanov 2012 | 7.2 | 2467.10 | CH2OH (g) → CH3O (g)  | ΔrH°(0 K) = 9.47 ± 0.17 kcal/mol | Nguyen 2015a | 2.8 | 2413.2 | CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.384) kcal/mol | Rossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion | 2.5 | 2453.1 | CH2OH (g) → [CH2OH]+ (g)  | ΔrH°(0 K) = 7.56 ± 0.01 (×1.384) eV | Dyke 1984 | 2.0 | 2459.11 | CH2OH (g) → CH2O (g) + H (g)  | ΔrH°(0 K) = 10188 ± 150 cm-1 | Kamarchik 2012, est unc | 2.0 | 2462.2 | CH2OH (g) + HBr (g) → CH3OH (g) + Br (g)  | ΔrH°(450 K) = -38.78 ± 1.53 kJ/mol | Dobe 1996, 2nd Law | 1.6 | 2452.9 | CH2OH (g) → C (g) + 3 H (g) + O (g)  | ΔrH°(0 K) = 386.11 ± 0.50 kcal/mol | Matus 2007 | 1.3 | 2460.1 | [CH2OH]+ (g) → CH2O (g) + H+ (g)  | ΔrH°(0 K) = 704.98 ± 0.39 kJ/mol | Czako 2009 | 1.2 | 2453.2 | CH2OH (g) → [CH2OH]+ (g)  | ΔrH°(0 K) = 7.56 ± 0.02 eV | Tao 1992 | 1.1 | 2457.11 | CH3OH (g) → CH2OH (g) + H (g)  | ΔrH°(0 K) = 95.05 ± 0.50 kcal/mol | Matus 2007 | 1.1 | 2464.9 | CH2OH (g) + CH4 (g) → CH3OH (g) + CH3 (g)  | ΔrH°(0 K) = 8.6 ± 0.5 kcal/mol | Matus 2007 | 1.1 | 2464.10 | CH2OH (g) + CH4 (g) → CH3OH (g) + CH3 (g)  | ΔrH°(0 K) = 8.5 ± 0.5 kcal/mol | Feller 2000a | 0.8 | 2467.11 | CH2OH (g) → CH3O (g)  | ΔrH°(0 K) = 9.62 ± 0.50 kcal/mol | Matus 2007 | 0.7 | 2453.12 | CH2OH (g) → [CH2OH]+ (g)  | ΔrH°(0 K) = 7.523 ± 0.025 eV | Matus 2007, est unc | 0.7 | 3247.9 | CH3CH2OH (g) + CH2OH (g) → CH2CH2OH (g, gauche-syn) + CH3OH (g)  | ΔrH°(0 K) = 5.53 ± 0.50 kcal/mol | Matus 2007, est unc | 0.6 | 3930.5 | (CH2OH)2 (g) → 2 CH2OH (g)  | ΔrH°(0 K) = 83.78 ± 1.50 kcal/mol | Ruscic W1RO | 0.6 | 3197.9 | CH3CH2OH (g) + CH2OH (g) → CH3CHOH (g, gauche-anti) + CH3OH (g)  | ΔrH°(0 K) = -1.15 ± 0.5 kcal/mol | Matus 2007, est unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2OH (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 36.0 | Methanol | CH3OH (g) | | -190.04 | -200.92 | ± 0.15 | kJ/mol | 32.04186 ± 0.00090 | 67-56-1*0 | 35.3 | Methanol | CH3OH (l) | | -235.28 | -238.62 | ± 0.16 | kJ/mol | 32.04186 ± 0.00090 | 67-56-1*500 | 33.5 | Hydroxymethylium | [CH2OH]+ (g) | | 717.67 | 709.73 | ± 0.19 | kJ/mol | 31.03337 ± 0.00088 | 18682-95-6*0 | 29.7 | Methoxy | CH3O (g) | | 28.82 | 21.45 | ± 0.29 | kJ/mol | 31.03392 ± 0.00088 | 2143-68-2*0 | 27.4 | Methoxide | [CH3O]- (g) | | -122.64 | -130.37 | ± 0.30 | kJ/mol | 31.03447 ± 0.00088 | 3315-60-4*0 | 17.4 | Chlorohydroxymethyl | CH(Cl)OH (g) | | -54.9 | -60.6 | ± 1.1 | kJ/mol | 65.4787 ± 0.0012 | 147139-06-8*0 | 17.4 | Chlorohydroxymethyl | CH(Cl)OH (g, syn-gauche) | | -54.9 | -60.9 | ± 1.1 | kJ/mol | 65.4787 ± 0.0012 | 147139-06-8*1 | 16.7 | Methanol cation | [CH3OH]+ (g) | | 856.81 | 846.49 | ± 0.32 | kJ/mol | 32.04131 ± 0.00090 | 12538-91-9*0 | 16.3 | Formaldehyde | CH2O (g) | | -105.377 | -109.215 | ± 0.097 | kJ/mol | 30.02598 ± 0.00087 | 50-00-0*0 | 16.3 | Formaldehyde | CH2O (g, singlet) | | -105.377 | -109.215 | ± 0.097 | kJ/mol | 30.02598 ± 0.00087 | 50-00-0*2 |
|
Most Influential reactions involving CH2OH (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.214 | 2467.10 | CH2OH (g) → CH3O (g)  | ΔrH°(0 K) = 9.47 ± 0.17 kcal/mol | Nguyen 2015a | 0.180 | 2453.3 | CH2OH (g) → [CH2OH]+ (g)  | ΔrH°(0 K) = 7.553 ± 0.006 (×1.114) eV | Ruscic 1991, Ruscic 1991a, Litorja 1998a | 0.138 | 3544.5 | CH2OOH (g) + CH3OH (g) → CH3OOH (g) + CH2OH (g)  | ΔrH°(0 K) = -1.65 ± 0.85 kcal/mol | Ruscic W1RO | 0.134 | 2457.9 | CH3OH (g) → CH2OH (g) + H (g)  | ΔrH°(0 K) = 94.59 ± 0.17 kcal/mol | Nguyen 2015a | 0.123 | 3544.4 | CH2OOH (g) + CH3OH (g) → CH3OOH (g) + CH2OH (g)  | ΔrH°(0 K) = -2.01 ± 0.90 kcal/mol | Ruscic CBS-n | 0.123 | 3544.2 | CH2OOH (g) + CH3OH (g) → CH3OOH (g) + CH2OH (g)  | ΔrH°(0 K) = -1.44 ± 0.90 kcal/mol | Ruscic G4 | 0.123 | 3544.1 | CH2OOH (g) + CH3OH (g) → CH3OOH (g) + CH2OH (g)  | ΔrH°(0 K) = -1.71 ± 0.90 kcal/mol | Ruscic G3X | 0.121 | 2459.10 | CH2OH (g) → CH2O (g) + H (g)  | ΔrH°(0 K) = 121.88 ± 0.46 (×1.719) kJ/mol | Marenich 2003b, note unc2 | 0.119 | 2454.8 | [CH2OH]- (g) → CH2OH (g)  | ΔrH°(0 K) = -0.207 ± 0.050 eV | Ruscic W1RO | 0.108 | 2459.1 | CH2OH (g) → CH2O (g) + H (g)  | ΔrH°(0 K) = 10160 ± 70 cm-1 | Ryazanov 2012 | 0.099 | 3544.3 | CH2OOH (g) + CH3OH (g) → CH3OOH (g) + CH2OH (g)  | ΔrH°(0 K) = -1.83 ± 1.0 kcal/mol | Ruscic CBS-n | 0.093 | 4224.4 | CH(Cl)OH (g, syn-gauche) + CH3CH3 (g) → CH2OH (g) + CH3CH2Cl (g)  | ΔrH°(0 K) = 3.86 ± 0.85 kcal/mol | Ruscic W1RO | 0.092 | 4223.4 | CH(Cl)OH (g, syn-gauche) + CH4 (g) → CH2OH (g) + CH3Cl (g)  | ΔrH°(0 K) = 8.68 ± 0.85 kcal/mol | Ruscic W1RO | 0.083 | 4224.1 | CH(Cl)OH (g, syn-gauche) + CH3CH3 (g) → CH2OH (g) + CH3CH2Cl (g)  | ΔrH°(0 K) = 3.67 ± 0.90 kcal/mol | Ruscic G3X | 0.083 | 4224.2 | CH(Cl)OH (g, syn-gauche) + CH3CH3 (g) → CH2OH (g) + CH3CH2Cl (g)  | ΔrH°(0 K) = 4.05 ± 0.90 kcal/mol | Ruscic G4 | 0.082 | 4223.2 | CH(Cl)OH (g, syn-gauche) + CH4 (g) → CH2OH (g) + CH3Cl (g)  | ΔrH°(0 K) = 9.11 ± 0.90 kcal/mol | Ruscic G4 | 0.082 | 4223.1 | CH(Cl)OH (g, syn-gauche) + CH4 (g) → CH2OH (g) + CH3Cl (g)  | ΔrH°(0 K) = 8.88 ± 0.90 kcal/mol | Ruscic G3X | 0.080 | 2454.4 | [CH2OH]- (g) → CH2OH (g)  | ΔrH°(0 K) = -0.187 ± 0.061 eV | Ruscic G4 | 0.076 | 3197.9 | CH3CH2OH (g) + CH2OH (g) → CH3CHOH (g, gauche-anti) + CH3OH (g)  | ΔrH°(0 K) = -1.15 ± 0.5 kcal/mol | Matus 2007, est unc | 0.071 | 3247.9 | CH3CH2OH (g) + CH2OH (g) → CH2CH2OH (g, gauche-syn) + CH3OH (g)  | ΔrH°(0 K) = 5.53 ± 0.50 kcal/mol | Matus 2007, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov |
4
|
|
P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017)
[DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
|
5
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017)
[DOI: 10.1021/acs.jpca.7b06017]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|