Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
PhenylC6H5 (g)c1cccc[c]1350.35336.99± 0.53kJ/mol77.1039 ±
0.0048
2396-01-2*0

Representative Geometry of C6H5 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H5 (g)

The 20 contributors listed below account only for 69.4% of the provenance of ΔfH° of C6H5 (g).
A total of 82 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
30.94975.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 eVGunion 1992
4.94986.9 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrG°(710 K) = -26.4 ± 2 kJ/molHeckmann 1996, Zhang 1989, 3rd Law, est unc
3.74973.10 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1195.15 ± 0.60 kcal/molKarton 2009a
3.14982.13 C6H6 (g) → C6H5 (g) H (g) ΔrH°(0 K) = 111.02 ± 0.60 kcal/molKarton 2009a
3.11397.1 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.771 ± 0.005 eVWickham-Jones 1989
2.44972.3 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.97 ± 0.09 kcal/molCoops 1947, Coops 1946
2.14986.10 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrH°(710 K) = -30.2 ± 3 kJ/molHeckmann 1996, Zhang 1989, 2nd Law, est unc
2.11398.11 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.773 ± 0.006 eVFeller 2016, note unc2
2.04991.1 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.047 kcal/molDavico 1995
2.04972.1 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.98 ± 0.10 kcal/molProsen 1945a, as quoted by Cox 1970
2.04972.4 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.92 ± 0.10 kcal/molGood 1969
1.44973.11 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 4995.9 ± 4 kJ/molLau 2006
1.45277.1 C6H5NO (g) → C6H5 (g) NO (g) ΔrG°(391 K) = 39.48 ± 0.5 kcal/molPark 1997, Yu 1994a, 3rd Law
1.34972.2 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.96 ± 0.12 kcal/molCox 1970
1.34979.5 C6H6 (g) Cl (g) → C6H5 (g) HCl (g) ΔrG°(296 K) = 27.54 ± 3.87 kJ/molSokolov 1998, Alecu 2007, 3rd Law
1.24986.6 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrH°(0 K) = -34.5 ± 4 kJ/molHemelsoet 2006
1.04979.2 C6H6 (g) Cl (g) → C6H5 (g) HCl (g) ΔrH°(525 K) = 36.80 ± 4.24 kJ/molAlecu 2007, Sokolov 1998, 2nd Law
1.05073.5 CH(CHCHCHCH) (g) CH3CHCH2 (g) → C6H5 (g) CH3CH3 (g) ΔrH°(0 K) = -6.78 ± 0.9 kcal/molRuscic W1RO
0.9118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.84974.14 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.261 ± 0.035 eVLau 2006

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
53.0 Phenide[C6H5]- (g)c1cccc[c-]1244.32230.90± 0.39kJ/mol77.1044 ±
0.0048
30922-78-2*0
37.0 BenzeneC6H6 (g)c1ccccc1100.6183.10± 0.23kJ/mol78.1118 ±
0.0048
71-43-2*0
37.0 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.50976.03± 0.23kJ/mol78.1113 ±
0.0048
34504-50-2*0
37.0 BenzeneC6H6 (cr,l)c1ccccc150.7149.16± 0.23kJ/mol78.1118 ±
0.0048
71-43-2*500
32.5 Azanide[NH2]- (g)[NH2-]114.74111.87± 0.30kJ/mol16.02317 ±
0.00016
17655-31-1*0
26.5 p-ChlorophenylC6H4Cl (g)c1(Cl)cc[c]cc1322.8312.0± 1.6kJ/mol111.5487 ±
0.0049
2396-00-1*0
26.5 o-ChlorophenylC6H4Cl (g)c1(Cl)[c]cccc1327.1316.4± 1.6kJ/mol111.5487 ±
0.0049
3474-42-8*0
26.4 m-ChlorophenylC6H4Cl (g)c1(Cl)c[c]ccc1319.9309.1± 1.6kJ/mol111.5487 ±
0.0049
3474-40-6*0
25.6 Phenylium[C6H5]+ (g)c1cccc[c+]11148.391135.61± 0.85kJ/mol77.1034 ±
0.0048
17333-73-2*0
25.6 Phenylium[C6H5]+ (g, singlet)c1cccc[c+]11148.391135.61± 0.85kJ/mol77.1034 ±
0.0048
17333-73-2*2

Most Influential reactions involving C6H5 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6344975.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 eVGunion 1992
0.2935277.1 C6H5NO (g) → C6H5 (g) NO (g) ΔrG°(391 K) = 39.48 ± 0.5 kcal/molPark 1997, Yu 1994a, 3rd Law
0.1335224.4 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.27 ± 0.9 kcal/molRuscic W1RO
0.1335225.4 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.85 ± 0.9 kcal/molRuscic W1RO
0.1325226.4 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -1.86 ± 0.9 kcal/molRuscic W1RO
0.1085224.2 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.49 ± 1.0 kcal/molRuscic G4
0.1075225.2 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -1.28 ± 1.0 kcal/molRuscic G4
0.1075226.2 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -2.22 ± 1.0 kcal/molRuscic G4
0.0895224.1 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.89 ± 1.1 kcal/molRuscic G3X
0.0895225.1 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -1.55 ± 1.1 kcal/molRuscic G3X
0.0885226.1 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -2.59 ± 1.1 kcal/molRuscic G3X
0.0715073.5 CH(CHCHCHCH) (g) CH3CHCH2 (g) → C6H5 (g) CH3CH3 (g) ΔrH°(0 K) = -6.78 ± 0.9 kcal/molRuscic W1RO
0.0674974.14 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.261 ± 0.035 eVLau 2006
0.0645224.3 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.39 ± 1.3 kcal/molRuscic CBS-n
0.0635225.3 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -1.00 ± 1.3 kcal/molRuscic CBS-n
0.0635226.3 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -2.13 ± 1.3 kcal/molRuscic CBS-n
0.0605277.3 C6H5NO (g) → C6H5 (g) NO (g) ΔrG°(525 K) = 33.43 ± 1.1 kcal/molPark 1997, Yu 1994a, 3rd Law
0.0604986.9 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrG°(710 K) = -26.4 ± 2 kJ/molHeckmann 1996, Zhang 1989, 3rd Law, est unc
0.0575073.4 CH(CHCHCHCH) (g) CH3CHCH2 (g) → C6H5 (g) CH3CH3 (g) ΔrH°(0 K) = -6.37 ± 1.0 kcal/molRuscic CBS-n
0.0575073.2 CH(CHCHCHCH) (g) CH3CHCH2 (g) → C6H5 (g) CH3CH3 (g) ΔrH°(0 K) = -6.30 ± 1.0 kcal/molRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov
4   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
5   D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017) [DOI: 10.1021/acs.jpca.7b06017]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.