Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Ammonium | [NH4]+ (g) | | 643.02 | 631.71 | ± 0.21 | kJ/mol | 18.03795 ± 0.00029 | 14798-03-9*0 |
|
Representative Geometry of [NH4]+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of [NH4]+ (g)The 14 contributors listed below account for 90.1% of the provenance of ΔfH° of [NH4]+ (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 43.1 | 1386.8 | [NH4]+ (g) → NH3 (g) + H+ (g)  | ΔrH°(0 K) = 846.40 ± 0.3 kJ/mol | Czako 2008 | 34.8 | 2549.9 | CO (g) + [NH4]+ (g) → [HCO]+ (g) + NH3 (g)  | ΔrH°(0 K) = 259.89 ± 0.3 kJ/mol | Czako 2008 | 2.5 | 1391.1 | NH4 (g) → [NH4]+ (g)  | ΔrH°(0 K) = 4.698 ± 0.010 eV | Signorell 1997a, Chen 2001, est unc | 2.4 | 1386.3 | [NH4]+ (g) → NH3 (g) + H+ (g)  | ΔrH°(298.15 K) = 203.9 ± 0.3 kcal/mol | Martin 1996a, Martin 1996 | 1.0 | 1382.1 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/mol | Larson 1923, Vanderzee 1972 | 0.9 | 2547.11 | [HCO]+ (g) → H+ (g) + CO (g)  | ΔrH°(0 K) = 586.51 ± 0.2 kJ/mol | Czako 2008 | 0.8 | 1386.5 | [NH4]+ (g) → NH3 (g) + H+ (g)  | ΔrH°(0 K) = 202.43 ± 0.5 kcal/mol | Dixon 2001, note unc3 | 0.8 | 1386.4 | [NH4]+ (g) → NH3 (g) + H+ (g)  | ΔrH°(0 K) = 202.5 ± 0.5 kcal/mol | Peterson 1998, note unc2 | 0.8 | 1388.10 | [NH4]+ (g) + H2O (g) → NH3 (g) + [H3O]+ (g)  | ΔrH°(0 K) = 38.8 ± 0.5 kcal/mol | Peterson 1998, note unc2 | 0.7 | 1392.1 | NH4 (g) → NH3 (g) + H (g)  | ΔrH°(0 K) = -0.130 ± 0.005 eV | Aue 1972 | 0.5 | 1381.5 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.875 ± 0.014 kcal/mol | Schulz 1966, Vanderzee 1972 | 0.5 | 2479.3 | CO (g) + H2 (g) → CH2O (g)  | ΔrH°(0 K) = 8.39 ± 0.28 kJ/mol | Czako 2009 | 0.3 | 1386.9 | [NH4]+ (g) → NH3 (g) + H+ (g)  | ΔrH°(0 K) = 202.26 ± 0.8 kcal/mol | Puzzarini 2008 | 0.3 | 1389.8 | [NH4]+ (g) + H2 (g) → [H3]+ (g) + NH3 (g)  | ΔrH°(0 K) = 102.61 ± 0.8 kcal/mol | Ruscic W1RO, Parthiban 2001, Ruscic W1U |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of [NH4]+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 20.0 | Oxomethylium | [HCO]+ (g) | | 827.769 | 827.184 | ± 0.097 | kJ/mol | 29.01749 ± 0.00086 | 17030-74-9*0 | 19.9 | Formyl | HCO (g) | | 41.393 | 41.770 | ± 0.097 | kJ/mol | 29.01804 ± 0.00086 | 2597-44-6*0 | 19.8 | Formaldehyde | CH2O (g) | | -105.377 | -109.215 | ± 0.097 | kJ/mol | 30.02598 ± 0.00087 | 50-00-0*0 | 19.8 | Formaldehyde | CH2O (g, singlet) | | -105.377 | -109.215 | ± 0.097 | kJ/mol | 30.02598 ± 0.00087 | 50-00-0*2 | 19.8 | Formaldehyde | CH2O (g, triplet) | | 196.014 | 192.683 | ± 0.097 | kJ/mol | 30.02598 ± 0.00087 | 50-00-0*1 | 19.6 | Formaldehyde cation | [CH2O]+ (g) | | 944.865 | 941.244 | ± 0.098 | kJ/mol | 30.02543 ± 0.00087 | 54288-05-0*0 | 14.5 | Ammonia | NH3 (g) | | -38.564 | -45.557 | ± 0.029 | kJ/mol | 17.03056 ± 0.00022 | 7664-41-7*0 | 14.5 | Azanylium | [NH3]+ (g) | | 944.273 | 937.318 | ± 0.029 | kJ/mol | 17.03001 ± 0.00022 | 19496-55-0*0 | 11.1 | Ammonium radical | NH4 (g) | | 190.01 | 179.42 | ± 0.43 | kJ/mol | 18.03850 ± 0.00029 | 92075-50-8*0 | 8.5 | Methylammonium | [CH3NH3]+ (g) | | 628.4 | 609.5 | ± 1.4 | kJ/mol | 32.06453 ± 0.00091 | 17000-00-9*0 |
|
Most Influential reactions involving [NH4]+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.454 | 2549.9 | CO (g) + [NH4]+ (g) → [HCO]+ (g) + NH3 (g)  | ΔrH°(0 K) = 259.89 ± 0.3 kJ/mol | Czako 2008 | 0.440 | 1386.8 | [NH4]+ (g) → NH3 (g) + H+ (g)  | ΔrH°(0 K) = 846.40 ± 0.3 kJ/mol | Czako 2008 | 0.218 | 1391.1 | NH4 (g) → [NH4]+ (g)  | ΔrH°(0 K) = 4.698 ± 0.010 eV | Signorell 1997a, Chen 2001, est unc | 0.162 | 2162.10 | [CH3NH3]+ (g) + NH3 (g) → CH3NH2 (g) + [NH4]+ (g)  | ΔrH°(0 K) = 11.10 ± 0.8 kcal/mol | Ruscic W1RO | 0.104 | 2162.9 | [CH3NH3]+ (g) + NH3 (g) → CH3NH2 (g) + [NH4]+ (g)  | ΔrH°(0 K) = 11.05 ± 1.0 kcal/mol | Ruscic CBS-n | 0.104 | 2162.7 | [CH3NH3]+ (g) + NH3 (g) → CH3NH2 (g) + [NH4]+ (g)  | ΔrH°(0 K) = 11.10 ± 1.0 kcal/mol | Ruscic G4 | 0.086 | 5538.5 | [NH2CO]+ (g) + NH3 (g) → HNCO (g) + [NH4]+ (g)  | ΔrH°(0 K) = -30.92 ± 0.8 kcal/mol | Ruscic W1RO | 0.072 | 2162.6 | [CH3NH3]+ (g) + NH3 (g) → CH3NH2 (g) + [NH4]+ (g)  | ΔrH°(0 K) = 10.96 ± 1.2 kcal/mol | Ruscic G3X | 0.061 | 2162.8 | [CH3NH3]+ (g) + NH3 (g) → CH3NH2 (g) + [NH4]+ (g)  | ΔrH°(0 K) = 10.85 ± 1.3 kcal/mol | Ruscic CBS-n | 0.055 | 5538.2 | [NH2CO]+ (g) + NH3 (g) → HNCO (g) + [NH4]+ (g)  | ΔrH°(0 K) = -30.72 ± 1.0 kcal/mol | Ruscic G4 | 0.055 | 5538.4 | [NH2CO]+ (g) + NH3 (g) → HNCO (g) + [NH4]+ (g)  | ΔrH°(0 K) = -31.53 ± 1.0 kcal/mol | Ruscic CBS-n | 0.038 | 5538.1 | [NH2CO]+ (g) + NH3 (g) → HNCO (g) + [NH4]+ (g)  | ΔrH°(0 K) = -31.06 ± 1.2 kcal/mol | Ruscic G3X | 0.032 | 5538.3 | [NH2CO]+ (g) + NH3 (g) → HNCO (g) + [NH4]+ (g)  | ΔrH°(0 K) = -31.58 ± 1.3 kcal/mol | Ruscic CBS-n | 0.026 | 2162.5 | [CH3NH3]+ (g) + NH3 (g) → CH3NH2 (g) + [NH4]+ (g)  | ΔrG°(298.15 K) = 9.5 ± 2 kcal/mol | Henderson 1972, Arnett 1972, Jones 1971, note unc3 | 0.026 | 2162.4 | [CH3NH3]+ (g) + NH3 (g) → CH3NH2 (g) + [NH4]+ (g)  | ΔrG°(600 K) = 10.8 ± 2 kcal/mol | Briggs 1972, note unc3 | 0.025 | 1386.3 | [NH4]+ (g) → NH3 (g) + H+ (g)  | ΔrH°(298.15 K) = 203.9 ± 0.3 kcal/mol | Martin 1996a, Martin 1996 | 0.014 | 1388.10 | [NH4]+ (g) + H2O (g) → NH3 (g) + [H3O]+ (g)  | ΔrH°(0 K) = 38.8 ± 0.5 kcal/mol | Peterson 1998, note unc2 | 0.012 | 1391.8 | NH4 (g) → [NH4]+ (g)  | ΔrH°(0 K) = 4.654 ± 0.040 (×1.044) eV | Ruscic W1RO | 0.011 | 2162.3 | [CH3NH3]+ (g) + NH3 (g) → CH3NH2 (g) + [NH4]+ (g)  | ΔrG°(600 K) = 10.0 ± 3 kcal/mol | Lau 1978, est unc | 0.011 | 2162.1 | [CH3NH3]+ (g) + NH3 (g) → CH3NH2 (g) + [NH4]+ (g)  | ΔrG°(298.15 K) = 12.0 ± 3 kcal/mol | Aue 1976, Aue 1972, Aue 1975, Aue 1975a |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov |
4
|
|
P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017)
[DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
|
5
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017)
[DOI: 10.1021/acs.jpca.7b06017]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|