Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Acetyl | CH3CO (g) | | -3.35 | -10.01 | ± 0.34 | kJ/mol | 43.0446 ± 0.0016 | 3170-69-2*0 |
|
Representative Geometry of CH3CO (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH3CO (g)The 20 contributors listed below account only for 57.3% of the provenance of ΔfH° of CH3CO (g). A total of 238 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 26.9 | 3354.4 | CH3CO (g) + HBr (g) → CH3CHO (g) + Br (g)  | ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/mol | Kovacs 2005, Atkinson 1999, 3rd Law | 7.7 | 3289.1 | CH3CHO (g) + H2 (g) → CH3CH2OH (g)  | ΔrH°(355.15 K) = -16.752 ± 0.100 kcal/mol | Dolliver 1938, note unc | 4.6 | 5381.1 | CH3C(O)C(O)CH3 (cr,l) → CH3C(O)C(O)CH3 (g)  | ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/mol | Nicholson 1954 | 2.2 | 3341.1 | CH3CO (g) → [CH3CO]+ (g)  | ΔrH°(0 K) = 6.95 ± 0.02 eV | Zamanpour 2008 | 1.4 | 3282.3 | CH3CHO (g) → 2 C (g) + O (g) + 4 H (g)  | ΔrH°(0 K) = 642.58 ± 0.30 kcal/mol | Karton 2011 | 1.4 | 3829.8 | CH3C(O)Cl (g) → CH3CO (g) + Cl (g)  | ΔrH°(0 K) = 83.42 ± 0.6 kcal/mol | Tang 2008, est unc | 1.1 | 3353.2 | CH3CO (g) → CH3 (g) + CO (g)  | ΔrG°(298.15 K) = 8.8 ± 3.0 kJ/mol | Watkins 1974, 3rd Law | 1.1 | 3353.1 | CH3CO (g) → CH3 (g) + CO (g)  | ΔrH°(320 K) = 47.0 ± 3.0 kJ/mol | Watkins 1974, 2nd Law | 1.0 | 3436.11 | O(CH2CH2) (g) → CH3CHO (g)  | ΔrH°(0 K) = -27.56 ± 0.25 kcal/mol | Karton 2011 | 1.0 | 5380.1 | CH3C(O)C(O)CH3 (cr,l) + 9/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -493.82 ± 0.19 kcal/mol | Nicholson 1954, mw conversion | 0.9 | 5386.1 | CH3C(O)C(O)CH3 (g) → CH3CO (g) + [CH3CO]+ (g)  | ΔrH°(0 K) = 10.090 ± 0.006 eV | Fogleman 2004 | 0.9 | 3340.9 | CH3CO (g) → 2 C (g) + 3 H (g) + O (g)  | ΔrH°(0 K) = 554.56 ± 0.8 kcal/mol | Feller 2008 | 0.9 | 5380.2 | CH3C(O)C(O)CH3 (cr,l) + 9/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -493.57 ± 0.20 kcal/mol | Parks 1954, mw conversion | 0.8 | 3354.2 | CH3CO (g) + HBr (g) → CH3CHO (g) + Br (g)  | ΔrG°(343 K) = 1.5 ± 1.4 kJ/mol | Niiranen 1992, Nicovich 1990, 3rd Law, est unc | 0.8 | 5384.5 | CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) + CH3CH3 (g)  | ΔrH°(0 K) = -15.45 ± 0.9 kcal/mol | Ruscic W1RO | 0.8 | 5381.2 | CH3C(O)C(O)CH3 (cr,l) → CH3C(O)C(O)CH3 (g)  | ΔrH°(298.15 K) = 8.6 ± 0.5 (×1.189) kcal/mol | Springall 1954, est unc | 0.8 | 3295.1 | CH3CHO (g) + OH (g) → CH2CH2 (g) + HO2 (g)  | ΔrH°(0 K) = 46.36 ± 0.4 kcal/mol | Wilke 2008, est unc | 0.7 | 3187.1 | CH3CH2OH (g) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(305.65 K) = -1408.03 ± 0.40 kJ/mol | Rossini 1932a, Rossini 1934a, note old units, mw conversion | 0.7 | 3440.2 | O(CH2CH2) (g) + 5/2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -312.15 ± 0.14 kcal/mol | Pell 1965, as quoted by Cox 1970 | 0.7 | 994.1 | Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq)  | ΔrH°(298.15 K) = -91.29 ± 0.40 (×2.134) kJ/mol | Johnson 1963, as quoted by CODATA Key Vals |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CO (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 64.4 | Acetaldehyde | CH3CHO (g) | | -155.12 | -165.60 | ± 0.26 | kJ/mol | 44.0526 ± 0.0017 | 75-07-0*0 | 63.6 | Acetaldehyde cation | [CH3CHO]+ (g) | | 831.87 | 821.89 | ± 0.26 | kJ/mol | 44.0520 ± 0.0017 | 36505-03-0*0 | 53.1 | Acetaldehyde | CH3CHO (cr,l) | | -187.10 | -191.82 | ± 0.31 | kJ/mol | 44.0526 ± 0.0017 | 75-07-0*500 | 48.6 | 2,3-Butanedione | CH3C(O)C(O)CH3 (g) | | -310.63 | -327.19 | ± 0.66 | kJ/mol | 86.0892 ± 0.0033 | 431-03-8*0 | -25.3 | Hydrogen bromide | HBr (aq) | | | -120.93 | ± 0.15 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*800 | -25.3 | Hydrogen bromide | HBr (aq, 2000 H2O) | | | -120.64 | ± 0.15 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*841 | -25.3 | Hydrogen bromide | HBr (aq, 3000 H2O) | | | -120.69 | ± 0.15 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*842 | -25.3 | Hydrogen bromide | HBr (aq, 2570 H2O) | | | -120.67 | ± 0.15 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*952 | -26.9 | Bromoniumyl | [HBr]+ (g) | | 1097.73 | 1089.89 | ± 0.14 | kJ/mol | 80.9114 ± 0.0010 | 12258-64-9*0 | -26.9 | Hydrogen bromide | HBr (g) | | -27.94 | -35.79 | ± 0.14 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*0 |
|
Most Influential reactions involving CH3CO (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.844 | 3354.4 | CH3CO (g) + HBr (g) → CH3CHO (g) + Br (g)  | ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/mol | Kovacs 2005, Atkinson 1999, 3rd Law | 0.717 | 5386.1 | CH3C(O)C(O)CH3 (g) → CH3CO (g) + [CH3CO]+ (g)  | ΔrH°(0 K) = 10.090 ± 0.006 eV | Fogleman 2004 | 0.131 | 3342.1 | [CH3CO]- (g) → CH3CO (g)  | ΔrH°(0 K) = 0.423 ± 0.037 eV | Nimlos 1989 | 0.094 | 3953.5 | OCHCO (g) + CH3CHO (g) → OCHCHO (g, trans) + CH3CO (g)  | ΔrH°(0 K) = 1.30 ± 0.9 kcal/mol | Ruscic W1RO | 0.076 | 3953.4 | OCHCO (g) + CH3CHO (g) → OCHCHO (g, trans) + CH3CO (g)  | ΔrH°(0 K) = 2.09 ± 1.0 kcal/mol | Ruscic CBS-n | 0.076 | 3953.2 | OCHCO (g) + CH3CHO (g) → OCHCHO (g, trans) + CH3CO (g)  | ΔrH°(0 K) = 1.32 ± 1.0 kcal/mol | Ruscic G4 | 0.075 | 3341.1 | CH3CO (g) → [CH3CO]+ (g)  | ΔrH°(0 K) = 6.95 ± 0.02 eV | Zamanpour 2008 | 0.071 | 3342.9 | [CH3CO]- (g) → CH3CO (g)  | ΔrH°(0 K) = 0.397 ± 0.050 eV | Ruscic W1RO | 0.069 | 3346.5 | CH3CO (g) → CH2(CHO) (g)  | ΔrH°(0 K) = 42.42 ± 1.2 kcal/mol | Ruscic W1RO | 0.062 | 3953.1 | OCHCO (g) + CH3CHO (g) → OCHCHO (g, trans) + CH3CO (g)  | ΔrH°(0 K) = 1.86 ± 1.1 kcal/mol | Ruscic G3X | 0.059 | 3346.2 | CH3CO (g) → CH2(CHO) (g)  | ΔrH°(0 K) = 42.19 ± 1.3 kcal/mol | Ruscic G4 | 0.059 | 3346.4 | CH3CO (g) → CH2(CHO) (g)  | ΔrH°(0 K) = 42.64 ± 1.3 kcal/mol | Ruscic CBS-n | 0.050 | 3346.1 | CH3CO (g) → CH2(CHO) (g)  | ΔrH°(0 K) = 42.62 ± 1.4 kcal/mol | Ruscic G3X | 0.048 | 3342.5 | [CH3CO]- (g) → CH3CO (g)  | ΔrH°(0 K) = 0.416 ± 0.061 eV | Ruscic G4 | 0.045 | 3953.3 | OCHCO (g) + CH3CHO (g) → OCHCHO (g, trans) + CH3CO (g)  | ΔrH°(0 K) = 2.17 ± 1.3 kcal/mol | Ruscic CBS-n | 0.038 | 3346.3 | CH3CO (g) → CH2(CHO) (g)  | ΔrH°(0 K) = 42.17 ± 1.6 kcal/mol | Ruscic CBS-n | 0.032 | 5384.5 | CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) + CH3CH3 (g)  | ΔrH°(0 K) = -15.45 ± 0.9 kcal/mol | Ruscic W1RO | 0.030 | 3829.8 | CH3C(O)Cl (g) → CH3CO (g) + Cl (g)  | ΔrH°(0 K) = 83.42 ± 0.6 kcal/mol | Tang 2008, est unc | 0.026 | 3354.2 | CH3CO (g) + HBr (g) → CH3CHO (g) + Br (g)  | ΔrG°(343 K) = 1.5 ± 1.4 kJ/mol | Niiranen 1992, Nicovich 1990, 3rd Law, est unc | 0.026 | 5384.4 | CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) + CH3CH3 (g)  | ΔrH°(0 K) = -15.78 ± 1.0 kcal/mol | Ruscic CBS-n |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov |
4
|
|
P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017)
[DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
|
5
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017)
[DOI: 10.1021/acs.jpca.7b06017]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|