Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Deuterium hydrideHD (g)[H][2H]0.3280.319± 0.000kJ/mol3.022042 ±
0.000070
13983-20-5*0

Representative Geometry of HD (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HD (g)

The 10 contributors listed below account for 90.5% of the provenance of ΔfH° of HD (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
20.1102.10 HD (g) → H (g) D (g) ΔrH°(0 K) = 36405.7828 ± 0.0020 cm-1Pachucki 2010, note unc
18.5103.6 HD (g) → [HD]+ (g) ΔrH°(0 K) = 124568.48581 ± 0.00072 cm-1Sprecher 2010, Sprecher 2013, Evenson 1988, Hannemann 2006, note unc
11.896.10 D2 (g) → 2 D (g) ΔrH°(0 K) = 36748.3633 ± 0.0018 cm-1Piszczatowski 2009, note unc
10.5105.1 [HD]+ (g) → H+ (g) D+ (g) ΔrH°(0 K) = 131224.68415 ± 0.00012 cm-1Korobov 2008, Sprecher 2010, note unc
8.1101.1 [D2]+ (g) → D (g) D+ (g) ΔrH°(0 K) = 21711.5833 ± 0.002 cm-1Moss 1993a, Leach 1995, est unc
6.257.14 H2 (g) → 2 H (g) ΔrH°(0 K) = 36118.0695 ± 0.0020 cm-1Piszczatowski 2009, note unc
5.0104.1 [HD]+ (g) → H+ (g) D (g) ΔrH°(0 K) = 21516.0696 ± 0.002 cm-1Moss 1993, Moss 1993a, Leach 1995, est unc
3.863.1 H2 (g, para) → H2 (g) ΔrH°(0 K) = 0.0 ± 0.0 cm-1triv
3.765.1 H2 (g, ortho) → [H2]+ (g) ΔrH°(0 K) = 124299.00429 ± 0.00071 cm-1Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008
2.497.4 D2 (g) → [D2]+ (g) ΔrH°(0 K) = 124745.39407 ± 0.0011 cm-1Liu 2010, note unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of HD (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
78.8 Deuterium hydride cation[HD]+ (g)[H][2H+]1490.4981490.587± 0.000kJ/mol3.021493 ±
0.000070
12181-16-7*0
47.4 Deuterium atom cationD+ (g)[2H+]1532.2101534.123± 0.000kJ/mol2.01355319809 ±
0.00000000040
14464-47-2*0
43.6 Deuterium atomD (g)[2H]219.804221.717± 0.000kJ/mol2.01410177800 ±
0.00000000040
16873-17-9*0
40.3 HydronH+ (g)[H+]1528.0841530.047± 0.000kJ/mol1.007391 ±
0.000070
12408-02-5*0
36.2 Dihydrogen cation[H2]+ (g)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*0
35.9 Hydrogen atomH (g)[H]216.034217.998± 0.000kJ/mol1.007940 ±
0.000070
12385-13-6*0
28.3 Dihydrogen cation[H2]+ (g, para)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*2
24.9 DihydrogenH2 (g, ortho)[H][H]1.4170.019± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*1
21.0 DihydrogenH2 (g, para)[H][H]-0.000-0.058± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*2
20.5 HydrideH- (g)[H-]143.264145.228± 0.000kJ/mol1.008489 ±
0.000070
12184-88-2*0

Most Influential reactions involving HD (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.827103.6 HD (g) → [HD]+ (g) ΔrH°(0 K) = 124568.48581 ± 0.00072 cm-1Sprecher 2010, Sprecher 2013, Evenson 1988, Hannemann 2006, note unc
0.369102.10 HD (g) → H (g) D (g) ΔrH°(0 K) = 36405.7828 ± 0.0020 cm-1Pachucki 2010, note unc
0.014102.5 HD (g) → H (g) D (g) ΔrH°(0 K) = 36405.775 ± 0.010 cm-1Stoicheff 2001, note H2a
0.014102.8 HD (g) → H (g) D (g) ΔrH°(0 K) = 36405.7814 ± 0.010 cm-1Stanke 2009, Pachucki 2010, est unc
0.006102.7 HD (g) → H (g) D (g) ΔrH°(0 K) = 36405.787 ± 0.015 cm-1Wolniewicz 1995, est unc
0.005103.3 HD (g) → [HD]+ (g) ΔrH°(0 K) = 124568.481 ± 0.012 cm-1Shiner 1993, Gilligan 1992
0.003102.6 HD (g) → H (g) D (g) ΔrH°(0 K) = 36405.763 ± 0.020 cm-1Kolos 1993, est unc
0.002103.2 HD (g) → [HD]+ (g) ΔrH°(0 K) = 124568.479 ± 0.020 cm-1Gilligan 1992
0.002103.4 HD (g) → [HD]+ (g) ΔrH°(0 K) = 124568.490 ± 0.020 cm-1Kolos 1994, est unc
0.000103.5 HD (g) → [HD]+ (g) ΔrH°(0 K) = 124568.491 ± 0.034 cm-1Greetham 2003, Moss 1993, note unc
0.000102.9 HD (g) → H (g) D (g) ΔrH°(0 K) = 36405.828 ± 0.010 (×4.555) cm-1Zhang 2004
0.000102.4 HD (g) → H (g) D (g) ΔrH°(0 K) = 36405.83 ± 0.10 cm-1Balakrishnan 1993
0.000102.3 HD (g) → H (g) D (g) ΔrH°(0 K) = 36405.88 ± 0.10 cm-1Eyler 1993
0.000102.2 HD (g) → H (g) D (g) ΔrH°(0 K) = 36406.2 ± 0.4 (×1.044) cm-1Herzberg 1970, Herzberg 1969
0.000103.1 HD (g) → [HD]+ (g) ΔrH°(0 K) = 124568.5 ± 0.6 cm-1Takezawa 1972, Herzberg 1972, Takezawa 1975, Dabrowski 1976
0.000102.1 HD (g) → H (g) D (g) ΔrH°(0 K) = 36400.5 ± 1.0 (×5.301) cm-1Herzberg 1960, Stoicheff 2001


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov
4   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
5   D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017) [DOI: 10.1021/acs.jpca.7b06017]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.