Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
FluoroformCHF3 (g)C(F)(F)F-689.03-695.98± 0.41kJ/mol70.01385 ±
0.00080
75-46-7*0

Representative Geometry of CHF3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CHF3 (g)

The 20 contributors listed below account only for 50.3% of the provenance of ΔfH° of CHF3 (g).
A total of 122 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
8.54588.7 CH2F2 (g) CF4 (g) → 2 CHF3 (g) ΔrH°(0 K) = -7.5 ± 2.0 kJ/molKlopper 2010a, est unc
4.14587.7 CH3F (g) CF4 (g) → CH2F2 (g) CHF3 (g) ΔrH°(0 K) = 22.4 ± 2.0 kJ/molKlopper 2010a, est unc
4.04452.1 CHF3 (g) → C (g) + 3/2 F2 (g) + 1/2 H2 (g) ΔrH°(0 K) = 1399.39 ± 2.0 kJ/molCsontos 2010
3.44471.1 CHF3 (g) I2 (g) → CF3I (g) HI (g) ΔrH°(298.15 K) = 17.10 ± 0.34 kcal/molGoy 1967, as quoted by Cox 1970
3.24456.8 CHF3 (g) CH3F (g) → CH4 (g) CF4 (g) ΔrH°(0 K) = -77.9 ± 2.0 kJ/molKlopper 2010a, est unc
2.64454.5 CHF3 (g) F (g) → CF4 (g) H (g) ΔrH°(0 K) = -101.4 ± 2.0 kJ/molKlopper 2010a, est unc
2.64454.4 CHF3 (g) F (g) → CF4 (g) H (g) ΔrH°(0 K) = -101.36 ± 2.0 kJ/molCsontos 2010
2.44588.6 CH2F2 (g) CF4 (g) → 2 CHF3 (g) ΔrH°(0 K) = -2.05 ± 0.9 kcal/molRuscic W1RO
2.24453.4 CHF3 (g) + 2 H (g) → CH3F (g) + 2 F (g) ΔrH°(0 K) = 181.83 ± 2.0 (×1.114) kJ/molCsontos 2010
1.94588.4 CH2F2 (g) CF4 (g) → 2 CHF3 (g) ΔrH°(0 K) = -1.90 ± 1.0 kcal/molRuscic G4
1.74121.2 C (graphite) + 2 F2 (g) → CF4 (g) ΔrH°(298.15 K) = -223.024 ± 0.157 kcal/molGreenberg 1968
1.64636.1 CHF3 (g) Br (g) → CF3 (g) HBr (g) ΔrH°(298.15 K) = 18.89 ± 0.5 kcal/molSyverud 1969, Arthur 1969, Amphlett 1968
1.64510.6 CH2F2 (g) F (g) → CHF3 (g) H (g) ΔrH°(0 K) = -106.45 ± 2.0 kJ/molCsontos 2010
1.64510.7 CH2F2 (g) F (g) → CHF3 (g) H (g) ΔrH°(0 K) = -108.9 ± 2.0 kJ/molKlopper 2010a, est unc
1.64588.3 CH2F2 (g) CF4 (g) → 2 CHF3 (g) ΔrH°(0 K) = -1.98 ± 1.1 kcal/molRuscic G3X
1.54451.10 CHF3 (g) → C (g) + 3 F (g) H (g) ΔrH°(0 K) = 1851.2 ± 2.8 (×1.067) kJ/molKlopper 2010a
1.24585.9 CHF3 (g) CH4 (g) → CH2F2 (g) CH3F (g) ΔrH°(0 K) = 85.4 ± 2.0 kJ/molKlopper 2010a, est unc
1.14644.1 CHF3 (g) H (g) → CF3 (g) H2 (g) ΔrH°(298.15 K) = 2.09 ± 0.6 kcal/molRuscic 1998, Hranisavljevic 1998a
1.14587.6 CH3F (g) CF4 (g) → CH2F2 (g) CHF3 (g) ΔrH°(0 K) = 5.28 ± 0.9 kcal/molRuscic W1RO
1.14455.1 CHF3 (g) O2 (g) + 2 H2O (cr,l) → 2 CO2 (g) + 6 HF (aq, 22 H2O) ΔrH°(298.15 K) = -180.66 ± 1.30 (×1.164) kcal/molNeugebauer 1958, as quoted by Cox 1970

Top 10 species with enthalpies of formation correlated to the ΔfH° of CHF3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
94.5 FluoroformCHF3 (l)C(F)(F)F-704.44± 0.43kJ/mol70.01385 ±
0.00080
75-46-7*590
41.6 DifluoromethaneCH2F2 (g)C(F)F-443.08-450.70± 0.33kJ/mol52.02339 ±
0.00081
75-10-5*0
38.8 DifluoromethaneCH2F2 (l)C(F)F-468.68± 0.36kJ/mol52.02339 ±
0.00081
75-10-5*590
34.9 TetrafluoromethaneCF4 (g)C(F)(F)(F)F-927.50-933.47± 0.25kJ/mol88.00431 ±
0.00080
75-73-0*0
29.7 PolytetrafluoroethyleneCF2CF2 (s)FC(C(F)(F)[*:1])(F)[*:2]-829.65± 0.58kJ/mol100.0150 ±
0.0016
9002-84-0*591
29.6 BromotrifluoromethaneCF3Br (g)C(F)(F)(F)Br-638.92-651.04± 0.45kJ/mol148.9099 ±
0.0013
75-63-8*0
29.1 DifluorobromomethaneCHF2Br (g)C(F)(F)Br-410.76-423.95± 0.47kJ/mol130.9194 ±
0.0013
1511-62-2*0
28.5 IodotrifluoromethaneCF3I (g)C(F)(F)(F)I-583.48-589.36± 0.50kJ/mol195.91038 ±
0.00080
2314-97-8*0
27.2 TrifluoromethylCF3 (g)[C](F)(F)F-464.96-467.76± 0.48kJ/mol69.00591 ±
0.00080
2264-21-3*0
27.1 Trifluoromethylium[CF3]+ (g)[C+](F)(F)F409.49406.28± 0.47kJ/mol69.00536 ±
0.00080
18851-76-8*0

Most Influential reactions involving CHF3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9994458.1 CHF3 (l) → CHF3 (g) ΔrH°(188.75 K) = 16.80 ± 0.14 kJ/molThermoData 2004
0.1454471.1 CHF3 (g) I2 (g) → CF3I (g) HI (g) ΔrH°(298.15 K) = 17.10 ± 0.34 kcal/molGoy 1967, as quoted by Cox 1970
0.1274588.7 CH2F2 (g) CF4 (g) → 2 CHF3 (g) ΔrH°(0 K) = -7.5 ± 2.0 kJ/molKlopper 2010a, est unc
0.1064559.3 CHClF2 (g) F (g) → CHF3 (g) Cl (g) ΔrH°(0 K) = -168.79 ± 3.1 kJ/molCsontos 2010
0.0954513.7 CH2F2 (g) → CH3F (g) CHF3 (g) ΔrH°(0 K) = -29.9 ± 2.0 kJ/molKlopper 2010a, est unc
0.0954513.6 CH2F2 (g) → CH3F (g) CHF3 (g) ΔrH°(0 K) = -31.06 ± 2.0 kJ/molCsontos 2010
0.093287.1 [CF3]- (g) H2O2 (g) → [HO2]- (g) CHF3 (g) ΔrG°(298.15 K) = -3.1 ± 1.8 (×3.221) kJ/molBierbaum 1981, note unc4
0.0804587.7 CH3F (g) CF4 (g) → CH2F2 (g) CHF3 (g) ΔrH°(0 K) = 22.4 ± 2.0 kJ/molKlopper 2010a, est unc
0.0694636.1 CHF3 (g) Br (g) → CF3 (g) HBr (g) ΔrH°(298.15 K) = 18.89 ± 0.5 kcal/molSyverud 1969, Arthur 1969, Amphlett 1968
0.0554456.8 CHF3 (g) CH3F (g) → CH4 (g) CF4 (g) ΔrH°(0 K) = -77.9 ± 2.0 kJ/molKlopper 2010a, est unc
0.0534585.9 CHF3 (g) CH4 (g) → CH2F2 (g) CH3F (g) ΔrH°(0 K) = 85.4 ± 2.0 kJ/molKlopper 2010a, est unc
0.0454644.1 CHF3 (g) H (g) → CF3 (g) H2 (g) ΔrH°(298.15 K) = 2.09 ± 0.6 kcal/molRuscic 1998, Hranisavljevic 1998a
0.0434461.5 CF3Cl (g) H (g) → CHF3 (g) Cl (g) ΔrH°(0 K) = -79.75 ± 3.1 kJ/molCsontos 2010
0.0424468.1 CHF3 (g) Br2 (g) → CF3Br (g) HBr (g) ΔrH°(750 K) = -4.2 ± 0.6 kcal/molCorbett 1962
0.0414468.3 CHF3 (g) Br2 (g) → CF3Br (g) HBr (g) ΔrH°(298.15 K) = -4.59 ± 0.25 (×2.43) kcal/molCoomber 1967, as quoted by Cox 1970
0.0414452.1 CHF3 (g) → C (g) + 3/2 F2 (g) + 1/2 H2 (g) ΔrH°(0 K) = 1399.39 ± 2.0 kJ/molCsontos 2010
0.0404510.6 CH2F2 (g) F (g) → CHF3 (g) H (g) ΔrH°(0 K) = -106.45 ± 2.0 kJ/molCsontos 2010
0.0404510.7 CH2F2 (g) F (g) → CHF3 (g) H (g) ΔrH°(0 K) = -108.9 ± 2.0 kJ/molKlopper 2010a, est unc
0.0394454.5 CHF3 (g) F (g) → CF4 (g) H (g) ΔrH°(0 K) = -101.4 ± 2.0 kJ/molKlopper 2010a, est unc
0.0394454.4 CHF3 (g) F (g) → CF4 (g) H (g) ΔrH°(0 K) = -101.36 ± 2.0 kJ/molCsontos 2010


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.