Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Hydroxyde[OH]- (aq)[OH-]-230.014± 0.029kJ/mol17.00789 ±
0.00031
14280-30-9*800

Top contributors to the provenance of ΔfH° of [OH]- (aq)

The 20 contributors listed below account only for 63.7% of the provenance of ΔfH° of [OH]- (aq).
A total of 216 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
35.9118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
4.4209.3 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 55.834 ± 0.020 kJ/molOts 1972
3.01888.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.81887.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
1.9161.1 [OH]- (g) → O- (g) H (g) ΔrH°(0 K) = 4.7796 ± 0.0010 (×1.756) eVMartin 2001, est unc
1.81887.6 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/molGOMB Ref Calorimeter, Alexandrov 2002
1.61444.1 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/molVanderzee 1972c
1.11975.1 CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 kJ/molPittam 1972
1.1211.8 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.895 ± 0.040 kJ/molFisher 1972, as quoted by CODATA Key Vals
1.1209.11 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.906 ± 0.040 kJ/molOlofsson 1975, as quoted by CODATA Key Vals
1.1211.6 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.923 ± 0.040 kJ/molPrue 1971, as quoted by CODATA Key Vals
1.01887.5 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.43 ± 0.35 kJ/molAlexandrov 2002a, Alexandrov 2002
1.01887.1 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(303.15 K) = -889.849 ± 0.350 kJ/molRossini 1931a, Rossini 1931b, Prosen 1945, Rossini 1940, note CH4
0.9209.2 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 55.86 ± 0.03 (×1.477) kJ/molAhrland 1971
0.8211.2 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 13.332 ± 0.011 kcal/molGerding 1963
0.71817.3 CO (g) H2O (g) → CO2 (g) H2 (g) ΔrG°(893 K) = -6.369 ± 0.283 kJ/molMeyer 1938, note COi, 3rd Law
0.71810.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
0.7209.10 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 55.815 ± 0.050 kJ/molOlofsson 1975, as quoted by CODATA Key Vals
0.7209.7 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 55.84 ± 0.05 kJ/molGrenthe 1970
0.61887.2 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.699 ± 0.430 kJ/molPittam 1972, note CH4a

Top 10 species with enthalpies of formation correlated to the ΔfH° of [OH]- (aq)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
92.2 WaterH2O (cr,l)O-286.302-285.830± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*500
92.2 WaterH2O (g, ortho)O-238.648-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*1
92.2 WaterH2O (g, para)O-238.932-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*2
92.2 WaterH2O (g)O-238.932-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*0
92.2 WaterH2O (cr, l, eq.press.)O-286.304-285.832± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*499
92.2 WaterH2O (l, eq.press.)O-285.832± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*589
92.2 Oxonium[H3O]+ (aq)[OH3+]-285.830± 0.026kJ/mol19.02267 ±
0.00037
13968-08-6*800
92.2 WaterH2O (l)O-285.830± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*590
92.1 WaterH2O (cr)O-286.302-292.743± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*510
92.1 WaterH2O (cr, eq.press.)O-286.304-292.745± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*509

Most Influential reactions involving [OH]- (aq)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.297209.3 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 55.834 ± 0.020 kJ/molOts 1972
0.141452.1 HF (g) [OH]- (aq) → F- (aq) H2O (cr,l) ΔrH°(298.15 K) = -28.065 ± 0.10 kcal/molVanderzee 1971
0.074209.11 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.906 ± 0.040 kJ/molOlofsson 1975, as quoted by CODATA Key Vals
0.074211.6 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.923 ± 0.040 kJ/molPrue 1971, as quoted by CODATA Key Vals
0.074211.8 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.895 ± 0.040 kJ/molFisher 1972, as quoted by CODATA Key Vals
0.060209.2 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 55.86 ± 0.03 (×1.477) kJ/molAhrland 1971
0.056211.2 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 13.332 ± 0.011 kcal/molGerding 1963
0.047209.10 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 55.815 ± 0.050 kJ/molOlofsson 1975, as quoted by CODATA Key Vals
0.047209.7 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 55.84 ± 0.05 kJ/molGrenthe 1970
0.042211.3 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.877 ± 0.010 (×5.301) kJ/molHarned 1958, CODATA Key Vals
0.036211.5 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.986 ± 0.050 (×1.139) kJ/molBezboruah 1973, CODATA Key Vals
0.035452.2 HF (g) [OH]- (aq) → F- (aq) H2O (cr,l) ΔrH°(298.15 K) = -27.93 ± 0.20 kcal/molVanderzee 1971
0.035211.7 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.872 ± 0.050 (×1.164) kJ/molSweeton 1974, as quoted by CODATA Key Vals
0.035454.1 HF (l) [OH]- (aq) → F- (aq) H2O (cr,l) ΔrH°(298.15 K) = -21.017 ± 0.029 kcal/molJohnson 1973, note HFb
0.030210.4 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 13.335 ± 0.015 kcal/molHale 1963
0.0271442.2 NH3 (aq, undissoc) H2O (cr,l) → [NH4]+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 0.865 ± 0.030 kcal/molPitzer 1937
0.021209.5 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 13.336 ± 0.018 kcal/molVanderzee 1963a
0.0203362.1 CH2CO (g) [OH]- (aq) H+ (aq) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -49.79 ± 0.41 kcal/molNuttall 1971
0.017209.1 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 13.334 ± 0.02 kcal/molLeung 1970
0.011211.4 H2O (cr,l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.907 ± 0.100 kJ/molDuecker 1962, as quoted by CODATA Key Vals


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.