Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
n-HexaneCH3CH2CH2CH2CH2CH3 (g)CCCCCC-130.05-166.92± 0.34kJ/mol86.1754 ±
0.0049
110-54-3*0

Top contributors to the provenance of ΔfH° of CH3CH2CH2CH2CH2CH3 (g)

The 20 contributors listed below account only for 71.3% of the provenance of ΔfH° of CH3CH2CH2CH2CH2CH3 (g).
A total of 96 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
16.73149.2 CH3CH2CH2CH2CH2CH3 (cr,l) + 19/2 O2 (g) → 6 CO2 (g) + 7 H2O (cr,l) ΔrH°(298.15 K) = -995.01 ± 0.13 kcal/molGood 1969
10.3118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
9.83149.3 CH3CH2CH2CH2CH2CH3 (cr,l) + 19/2 O2 (g) → 6 CO2 (g) + 7 H2O (cr,l) ΔrH°(298.15 K) = -995.00 ± 0.17 kcal/molJessup 1937, Prosen 1945
7.93176.1 CH2CHCH2CH2CHCH2 (g) + 2 H2 (g) → CH3CH2CH2CH2CH2CH3 (g) ΔrH°(355.15 K) = -60.525 ± 0.150 kcal/molKistiakowsky 1936, Cox 1970
7.23149.1 CH3CH2CH2CH2CH2CH3 (cr,l) + 19/2 O2 (g) → 6 CO2 (g) + 7 H2O (cr,l) ΔrH°(298.15 K) = -4162.98 ± 0.83 kJ/molProsen 1944b
3.73163.1 CH3(CH2)5CH3 (g) CH3CH2CH2CH2CH3 (g) → 2 CH3CH2CH2CH2CH2CH3 (g) ΔrH°(298.15 K) = -0.03 ± 0.40 kcal/molProsen 1945
1.81764.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.73178.1 CH2CHCH2CH2CHCH2 (cr,l) → CH2CHCH2CH2CHCH2 (g) ΔrH°(298.15 K) = 29.24 ± 0.30 kJ/molThermoData 2004
1.63177.1 CH2CHCH2CH2CHCH2 (cr,l) + 17/2 O2 (g) → 5 H2O (cr,l) + 6 CO2 (g) ΔrH°(298.15 K) = -918.81 ± 0.07 kcal/molCoops 1946, Cox 1970
1.63147.1 CH3CH2CH2CH2CH2CH3 (g) CH3CH2CH3 (g) → CH3CH2CH2CH2CH3 (g) CH3CH2CH2CH3 (g) ΔrH°(298.15 K) = -0.03 ± 0.31 kcal/molProsen 1945
1.31888.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.03167.1 CH3(CH2)5CH3 (cr,l) + 11 O2 (g) → 7 CO2 (g) + 8 H2O (cr,l) ΔrH°(298.15 K) = -4817.09 ± 0.83 kJ/molProsen 1944b
1.01887.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
0.83163.6 CH3(CH2)5CH3 (g) CH3CH2CH2CH2CH3 (g) → 2 CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = -0.07 ± 0.85 kcal/molKarton 2009b, Ruscic W1RO
0.73163.3 CH3(CH2)5CH3 (g) CH3CH2CH2CH2CH3 (g) → 2 CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = -0.08 ± 0.90 kcal/molRuscic G4
0.73163.5 CH3(CH2)5CH3 (g) CH3CH2CH2CH2CH3 (g) → 2 CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 0.01 ± 0.90 kcal/molRuscic CBS-n
0.73163.2 CH3(CH2)5CH3 (g) CH3CH2CH2CH2CH3 (g) → 2 CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = -0.08 ± 0.90 kcal/molRuscic G3X
0.71764.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
0.71764.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
0.73167.2 CH3(CH2)5CH3 (cr,l) + 11 O2 (g) → 7 CO2 (g) + 8 H2O (cr,l) ΔrH°(298.15 K) = -1151.14 ± 0.24 kcal/molJessup 1937, Prosen 1945

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2CH2CH2CH2CH3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.4 n-HexaneCH3CH2CH2CH2CH2CH3 (cr,l)CCCCCC-179.98-198.64± 0.34kJ/mol86.1754 ±
0.0049
110-54-3*500
49.5 WaterH2O (g, ortho)O-238.648-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*1
49.5 WaterH2O (g, para)O-238.932-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*2
49.5 WaterH2O (g)O-238.932-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*0
49.5 WaterH2O (cr, l, eq.press.)O-286.304-285.832± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*499
49.5 WaterH2O (l, eq.press.)O-285.832± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*589
49.5 WaterH2O (l)O-285.830± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*590
49.5 Oxonium[H3O]+ (aq)[OH3+]-285.830± 0.026kJ/mol19.02267 ±
0.00037
13968-08-6*800
49.5 WaterH2O (cr,l)O-286.302-285.830± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*500
49.5 WaterH2O (cr)O-286.302-292.743± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*510

Most Influential reactions involving CH3CH2CH2CH2CH2CH3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5533148.1 CH3CH2CH2CH2CH2CH3 (cr,l) → CH3CH2CH2CH2CH2CH3 (g) ΔrH°(298.15 K) = 31.73 ± 0.08 kJ/molMajer 1985
0.4043176.1 CH2CHCH2CH2CHCH2 (g) + 2 H2 (g) → CH3CH2CH2CH2CH2CH3 (g) ΔrH°(355.15 K) = -60.525 ± 0.150 kcal/molKistiakowsky 1936, Cox 1970
0.3533148.2 CH3CH2CH2CH2CH2CH3 (cr,l) → CH3CH2CH2CH2CH2CH3 (g) ΔrH°(298.15 K) = 31.71 ± 0.10 kJ/molOsborne 1947, est unc
0.1433163.1 CH3(CH2)5CH3 (g) CH3CH2CH2CH2CH3 (g) → 2 CH3CH2CH2CH2CH2CH3 (g) ΔrH°(298.15 K) = -0.03 ± 0.40 kcal/molProsen 1945
0.0973147.1 CH3CH2CH2CH2CH2CH3 (g) CH3CH2CH3 (g) → CH3CH2CH2CH2CH3 (g) CH3CH2CH2CH3 (g) ΔrH°(298.15 K) = -0.03 ± 0.31 kcal/molProsen 1945
0.0803148.4 CH3CH2CH2CH2CH2CH3 (cr,l) → CH3CH2CH2CH2CH2CH3 (g) ΔrH°(298.15 K) = 7.56 ± 0.05 kcal/molProsen 1945, est unc
0.0643169.5 CH3(CH2)6CH3 (g) CH3CH2CH2CH2CH2CH3 (g) → 2 CH3(CH2)5CH3 (g) ΔrH°(0 K) = 0.09 ± 0.85 kcal/molKarton 2009b, Ruscic W1RO
0.0573169.4 CH3(CH2)6CH3 (g) CH3CH2CH2CH2CH2CH3 (g) → 2 CH3(CH2)5CH3 (g) ΔrH°(0 K) = 0.01 ± 0.90 kcal/molRuscic CBS-n
0.0573169.1 CH3(CH2)6CH3 (g) CH3CH2CH2CH2CH2CH3 (g) → 2 CH3(CH2)5CH3 (g) ΔrH°(0 K) = 0.12 ± 0.90 kcal/molRuscic G3X
0.0573169.2 CH3(CH2)6CH3 (g) CH3CH2CH2CH2CH2CH3 (g) → 2 CH3(CH2)5CH3 (g) ΔrH°(0 K) = 0.12 ± 0.90 kcal/molRuscic G4
0.0503152.2 CH3CH2CH2CH(CH3)2 (g) CH3CH2CH2CH2CH3 (g) → CH3CH2CH2CH2CH2CH3 (g) CH3CH2CH(CH3)2 (g) ΔrH°(0 K) = -0.11 ± 0.90 kcal/molRuscic G4
0.0503152.4 CH3CH2CH2CH(CH3)2 (g) CH3CH2CH2CH2CH3 (g) → CH3CH2CH2CH2CH2CH3 (g) CH3CH2CH(CH3)2 (g) ΔrH°(0 K) = -0.01 ± 0.90 kcal/molRuscic CBS-n
0.0503152.1 CH3CH2CH2CH(CH3)2 (g) CH3CH2CH2CH2CH3 (g) → CH3CH2CH2CH2CH2CH3 (g) CH3CH2CH(CH3)2 (g) ΔrH°(0 K) = -0.09 ± 0.90 kcal/molRuscic G3X
0.0463169.3 CH3(CH2)6CH3 (g) CH3CH2CH2CH2CH2CH3 (g) → 2 CH3(CH2)5CH3 (g) ΔrH°(0 K) = 0.11 ± 1.00 kcal/molRuscic CBS-n
0.0443170.5 CH3(CH2)6CH3 (g) CH3CH2CH2CH2CH3 (g) → CH3CH2CH2CH2CH2CH3 (g) CH3(CH2)5CH3 (g) ΔrH°(0 K) = 0.02 ± 0.85 kcal/molKarton 2009b, Ruscic W1RO
0.0403152.3 CH3CH2CH2CH(CH3)2 (g) CH3CH2CH2CH2CH3 (g) → CH3CH2CH2CH2CH2CH3 (g) CH3CH2CH(CH3)2 (g) ΔrH°(0 K) = -0.11 ± 1.0 kcal/molRuscic CBS-n
0.0393170.2 CH3(CH2)6CH3 (g) CH3CH2CH2CH2CH3 (g) → CH3CH2CH2CH2CH2CH3 (g) CH3(CH2)5CH3 (g) ΔrH°(0 K) = 0.04 ± 0.90 kcal/molRuscic G4
0.0393170.1 CH3(CH2)6CH3 (g) CH3CH2CH2CH2CH3 (g) → CH3CH2CH2CH2CH2CH3 (g) CH3(CH2)5CH3 (g) ΔrH°(0 K) = 0.04 ± 0.90 kcal/molRuscic G3X
0.0393170.4 CH3(CH2)6CH3 (g) CH3CH2CH2CH2CH3 (g) → CH3CH2CH2CH2CH2CH3 (g) CH3(CH2)5CH3 (g) ΔrH°(0 K) = 0.02 ± 0.90 kcal/molRuscic CBS-n
0.0313170.3 CH3(CH2)6CH3 (g) CH3CH2CH2CH2CH3 (g) → CH3CH2CH2CH2CH2CH3 (g) CH3(CH2)5CH3 (g) ΔrH°(0 K) = 0.03 ± 1.00 kcal/molRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.