Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Acetic acidCH3C(O)OH (aq, 1000 H2O)CC(=O)O-484.91± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*839

Top contributors to the provenance of ΔfH° of CH3C(O)OH (aq, 1000 H2O)

The 16 contributors listed below account for 90.6% of the provenance of ΔfH° of CH3C(O)OH (aq, 1000 H2O).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
25.83771.2 CH3C(O)OH (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -209.125 ± 0.054 kcal/molLebedeva 1964
20.73781.3 CH3C(O)OH (l) → CH3C(O)OH (aq, 700 H2O) ΔrH°(298.15 K) = -0.293 ± 0.05 kcal/molParker 1965, est unc
11.43771.3 CH3C(O)OH (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -875.14 ± 0.34 kJ/molSteele 1997
8.33771.1 CH3C(O)OH (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -874.54 ± 0.30 (×1.325) kJ/molEvans 1959
5.13772.2 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.360 ± 0.100 kcal/molParker 1965, NBS Tables 1989, est unc
2.33772.3 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.361 ± 0.150 kcal/molPritchard 1950, Parker 1965, est unc
2.33772.8 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.350 ± 0.150 kcal/molBerthelot 1875b, Parker 1965, est unc
2.33772.6 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.364 ± 0.150 kcal/molThomsen 1882, Parker 1965, est unc
2.33772.5 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.326 ± 0.150 kcal/molPickering 1895, Parker 1965, est unc
2.33772.4 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.347 ± 0.150 kcal/molKlibanova 1933, Parker 1965, est unc
2.2118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.63772.7 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.446 ± 0.180 kcal/molCarson 1949, Parker 1965, est unc
1.53338.1 CH2CO (g) [OH]- (aq) H+ (aq) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -49.79 ± 0.41 kcal/molNuttall 1971
0.83799.7 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 10.13 ± 0.9 kcal/molRuscic W1RO
0.63799.4 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 9.60 ± 1.0 kcal/molRuscic G4
0.63770.4 CH3C(O)OH (l) → CH3C(O)OH (g) ΔrH°(298.15 K) = 50.3 ± 1.0 kJ/molVerevkin 2000, note unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)OH (aq, 1000 H2O)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.8 Acetic acidCH3C(O)OH (aq, 700 H2O)CC(=O)O-484.90± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*835
99.8 Acetic acidCH3C(O)OH (aq, 1500 H2O)CC(=O)O-484.92± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*840
99.8 Acetic acidCH3C(O)OH (aq)CC(=O)O-485.19± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*800
99.7 Acetic acidCH3C(O)OH (aq, 500 H2O)CC(=O)O-484.89± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*833
99.7 Acetic acidCH3C(O)OH (aq, 75 H2O)CC(=O)O-484.71± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*825
99.7 Acetic acidCH3C(O)OH (aq, 10000 H2O)CC(=O)O-484.94± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*850
74.7 Acetic acidCH3C(O)OH (l)CC(=O)O-484.10-483.68± 0.18kJ/mol60.0520 ±
0.0017
64-19-7*500
63.0 Acetyl chlorideCH3C(O)Cl (l)CC(=O)Cl-272.17± 0.33kJ/mol78.4973 ±
0.0019
75-36-5*500
62.2 Acetyl chlorideCH3C(O)Cl (g)CC(=O)Cl-232.61-241.60± 0.33kJ/mol78.4973 ±
0.0019
75-36-5*0
22.8 WaterH2O (cr,l)O-286.302-285.830± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500

Most Influential reactions involving CH3C(O)OH (aq, 1000 H2O)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5413779.1 CH3C(O)OH (aq, 1000 H2O) → CH3C(O)OH (aq, 1500 H2O) ΔrH°(298.15 K) = -0.001 ± 0.004 kcal/molParker 1965
0.5413775.1 CH3C(O)OH (aq, 1000 H2O) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.065 ± 0.004 kcal/molParker 1965, NBS Tables 1989
0.4993778.1 CH3C(O)OH (aq, 700 H2O) → CH3C(O)OH (aq, 1000 H2O) ΔrH°(298.15 K) = -0.003 ± 0.004 kcal/molParker 1965


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov
4   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
5   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.