Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.201067.98± 0.12kJ/mol28.0526 ±
0.0016
34470-02-5*0

Representative Geometry of [CH2CH2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH2CH2]+ (g)

The 20 contributors listed below account only for 46.0% of the provenance of ΔfH° of [CH2CH2]+ (g).
A total of 599 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
9.92032.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
5.1118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
4.01975.1 CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 kJ/molPittam 1972
3.21888.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.82033.1 CH2CH2 (g) H2 (g) → CH3CH3 (g) ΔrH°(355.15 K) = -32.831 ± 0.05 kcal/molKistiakowsky 1935
2.73042.1 CH2(CH2CH2CH2) (g) → 2 CH2CH2 (g) ΔrG°(750 K) = -13.37 ± 0.12 kcal/molQuick 1972, 3rd Law, note unc3
2.22782.14 CH2CCH2 (g) CH4 (g) → 2 CH2CH2 (g) ΔrH°(0 K) = -8.78 ± 0.8 kJ/molFerguson 2013, est unc
2.03046.1 CH2(CH2CH2CH2) (l) + 6 O2 (g) → 4 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -650.33 ± 0.12 kcal/molKaarsemaker 1952, Coops 1950, as quoted by Cox 1970
1.51810.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
1.32033.2 CH2CH2 (g) H2 (g) → CH3CH3 (g) ΔrG°(723.15 K) = -10.867 ± 0.072 kcal/molKistiakowsky 1951
1.34155.1 CH3CH2Cl (g) + 3 O2 (g) → 2 CO2 (g) HCl (aq, 600 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1413.04 ± 0.59 kJ/molFletcher 1971
1.32782.11 CH2CCH2 (g) CH4 (g) → 2 CH2CH2 (g) ΔrH°(0 K) = -2.24 ± 0.25 kcal/molKarton 2009b, Karton 2011
1.21764.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.22111.5 CH2CH2 (g) → HCCH (g) CH3CH3 (g) ΔrH°(0 K) = 9.26 ± 0.20 kcal/molKarton 2007
1.12019.1 CH2CH2 (g) → 2 C (g) + 4 H (g) ΔrH°(0 K) = 2226.23 ± 0.70 kJ/molHarding 2007, Ferguson 2013
0.93056.6 CH2CHCHCH2 (g) + 2 CH4 (g) → CH3CH3 (g) + 2 CH2CH2 (g) ΔrH°(0 K) = 14.29 ± 0.50 kcal/molPorterfield 2015, est unc
0.92782.12 CH2CCH2 (g) CH4 (g) → 2 CH2CH2 (g) ΔrH°(0 K) = -2.38 ± 0.3 kcal/molWheeler 2007
0.82112.2 CH2CH2 (g) → [HCCH]+ (g) H2 (g) ΔrH°(0 K) = 13.135 ± 0.005 (×1.297) eVMahnert 1996
0.82112.1 CH2CH2 (g) → [HCCH]+ (g) H2 (g) ΔrH°(0 K) = 13.135 ± 0.005 (×1.297) eVMalow 1999, est unc
0.82111.4 CH2CH2 (g) → HCCH (g) CH3CH3 (g) ΔrH°(0 K) = 9.23 ± 0.25 kcal/molKarton 2006

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH2CH2]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 EthyleneCH2CH2 (g)C=C60.8852.36± 0.12kJ/mol28.0532 ±
0.0016
74-85-1*0
64.9 EthaneCH3CH3 (g)CC-68.34-83.97± 0.13kJ/mol30.0690 ±
0.0017
74-84-0*0
47.0 AcetyleneHCCH (g)C#C228.82228.26± 0.13kJ/mol26.0373 ±
0.0016
74-86-2*0
47.0 Acetylene cation[HCCH]+ (g)C#[CH+]1328.831328.17± 0.13kJ/mol26.0367 ±
0.0016
25641-79-6*0
45.9 PropaneCH3CH2CH3 (g)CCC-82.73-105.01± 0.18kJ/mol44.0956 ±
0.0025
74-98-6*0
45.7 Carbon atomC (g, triplet)[C]711.401716.886± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*1
45.7 Carbon atomC (g)[C]711.401716.886± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*0
45.7 Carbon atomC (g, quintuplet)[C]1114.9631120.110± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*3
45.7 Carbon atomC (g, singlet)[C]833.332838.478± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*2
45.7 Carbon atom cationC+ (g)[C+]1797.8531803.451± 0.048kJ/mol12.01015 ±
0.00080
14067-05-1*0

Most Influential reactions involving [CH2CH2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5682020.2 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 84790.2 ± 0.4 cm-1Xing 2006, note unc
0.4292020.1 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 84790.42 ± 0.46 cm-1Willitsch 2004, note unc
0.0864904.1 [C6H5]+ (g, triplet) + 2 CH2CH2 (g) → C6H6 (g) [CH2CH2]+ (g) CH2CH (g) ΔrH°(0 K) = 24.88 ± 1.5 kcal/molRuscic G3B3
0.0344904.2 [C6H5]+ (g, triplet) + 2 CH2CH2 (g) → C6H6 (g) [CH2CH2]+ (g) CH2CH (g) ΔrH°(298.15 K) = 106 ± 10 kJ/molNicolaides 1997
0.0094904.3 [C6H5]+ (g, triplet) + 2 CH2CH2 (g) → C6H6 (g) [CH2CH2]+ (g) CH2CH (g) ΔrH°(0 K) = 0.979 ± 0.2 eVKlippenstein 1997, note unc4
0.0012020.3 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 84799 ± 5 (×1.756) cm-1Williams 1991
0.0002027.8 [CH2CH2]+ (g) → 2 C (g) + 4 H (g) ΔrH°(0 K) = 289.95 ± 1.50 kcal/molRuscic W1RO
0.0002027.7 [CH2CH2]+ (g) → 2 C (g) + 4 H (g) ΔrH°(0 K) = 288.55 ± 1.60 kcal/molRuscic CBS-n
0.0002027.4 [CH2CH2]+ (g) → 2 C (g) + 4 H (g) ΔrH°(0 K) = 289.20 ± 1.60 kcal/molRuscic G4
0.0002027.3 [CH2CH2]+ (g) → 2 C (g) + 4 H (g) ΔrH°(0 K) = 289.15 ± 1.72 kcal/molRuscic G3X
0.0002021.7 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 10.515 ± 0.003 eVMasclet 1973
0.0002021.4 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 10.517 ± 0.002 (×2.181) eVStockbauer 1975
0.0002021.5 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 10.517 ± 0.003 (×1.477) eVStockbauer 1975a
0.0002021.8 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 10.511 ± 0.005 eVBrehm 1966
0.0002021.2 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 10.514 ± 0.005 eVDehmer 1979, est unc
0.0002021.9 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 10.507 ± 0.004 (×1.445) eVNicholson 1965
0.0002021.6 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 10.507 ± 0.004 (×1.445) eVKnowles 1974
0.0002020.4 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 84750 ± 50 cm-1Price 1940, est unc
0.0002021.1 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 10.514 ± 0.007 eVCarlier 1979
0.0002022.4 CH2CH2 (g) → [CH2CH2]+ (g) ΔrH°(0 K) = 10.51 ± 0.01 eVBaker 1968a


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.