Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Bromobenzene cation[C6H5Br]+ (g)c1ccc(cc1)[Br+]994.8973.2± 1.3kJ/mol157.0074 ±
0.0049
55450-33-4*0

Representative Geometry of [C6H5Br]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C6H5Br]+ (g)

The 20 contributors listed below account only for 82.0% of the provenance of ΔfH° of [C6H5Br]+ (g).
A total of 36 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
14.85125.1 C6H5Br (cr,l) HCl (g) → C6H6 (cr,l) + 1/2 Br2 (cr,l) + 1/2 Cl2 (g) ΔrH°(298.15 K) = 19.98 ± 0.78 kcal/molChernick 1956, Hartley 1951
13.95136.1 C6H5I (cr,l) + 1/2 Br2 (cr,l) → C6H5Br (cr,l) + 1/2 I2 (cr,l) ΔrH°(298.15 K) = -12.85 ± 0.55 kcal/molChernick 1956, Hartley 1951
9.45119.2 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.827 ± 0.030 eVStevens 2009
8.45119.1 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.781 ± 0.029 (×1.091) eVStevens 2009
6.55118.1 C6H5Cl (g) Br (g) → C6H5Br (g) Cl (g) ΔrH°(0 K) = 0.647 ± 0.049 eVStevens 2009
3.65119.5 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 273.5 ± 1 (×1.114) kcal/molPratt 1981
3.55106.4 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1276.98 ± 1.60 kcal/molRuscic G4
3.35118.2 C6H5Cl (g) Br (g) → C6H5Br (g) Cl (g) ΔrH°(0 K) = 0.647 ± 0.069 eVStevens 2009
3.15106.3 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1277.62 ± 1.72 kcal/molRuscic G3X
2.75120.1 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.76 ± 0.02 (×2.768) eVRosenstock 1980, Baer 1982
2.15119.7 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.75 ± 0.05 (×1.269) eVSergeev 1970
1.75120.2 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.81 ± 0.07 eVDunbar 1984
1.65138.1 C6H5I (cr,l) HCl (g) → C6H6 (cr,l) + 1/2 I2 (cr,l) + 1/2 Cl2 (g) ΔrH°(298.15 K) = 7.13 ± 0.75 kcal/molChernick 1956, Hartley 1951
1.15119.6 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.73 ± 0.05 (×1.682) eVMalinovich 1985
1.15120.3 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.90 ± 0.05 (×1.719) eVLifshitz 1991, est unc
1.05147.1 C6H5NO (g) → [C6H5]+ (g) NO (g) ΔrH°(0 K) = 10.607 ± 0.020 eVStevens 2010a
0.94881.14 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.261 ± 0.035 eVLau 2006
0.94883.9 [C6H5]+ (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 4198.8 ± 4 kJ/molLau 2006
0.85120.4 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.74 ± 0.10 eVDunbar 1985, Dunbar 1984, est unc
0.75135.1 C6H5I (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -1526.32 ± 2.0 (×1.139) kcal/molSmith 1956

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6H5Br]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 BromobenzeneC6H5Br (g)c1ccc(cc1)Br126.6104.6± 1.3kJ/mol157.0079 ±
0.0049
108-86-1*0
99.0 BromobenzeneC6H5Br (cr,l)c1ccc(cc1)Br59.9± 1.3kJ/mol157.0079 ±
0.0049
108-86-1*500
46.4 Phenylium[C6H5]+ (g)c1cccc[c+]11148.461135.68± 0.87kJ/mol77.1034 ±
0.0048
17333-73-2*0
46.4 Phenylium[C6H5]+ (g, singlet)c1cccc[c+]11148.461135.68± 0.87kJ/mol77.1034 ±
0.0048
17333-73-2*2
40.3 IodobenzeneC6H5I (cr,l)c1ccc(cc1)I112.8112.9± 1.1kJ/mol204.0084 ±
0.0048
591-50-4*500
40.3 IodobenzeneC6H5I (g)c1ccc(cc1)I177.7161.7± 1.0kJ/mol204.0084 ±
0.0048
591-50-4*0
40.2 Iodobenzene cation[C6H5I]+ (g)c1ccc(cc1)[I+]1022.71007.2± 1.0kJ/mol204.0078 ±
0.0048
38406-85-8*0
19.9 Phenylium[C6H5]+ (g, triplet)c1cccc[c+]11251.11238.0± 1.9kJ/mol77.1034 ±
0.0048
17333-73-2*1
17.8 NitrosobenzeneC6H5NO (g)c1ccc(cc1)N=O215.7198.7± 1.2kJ/mol107.1100 ±
0.0048
586-96-9*0
14.4 PhenylC6H5 (g)c1cccc[c]1350.24336.89± 0.54kJ/mol77.1039 ±
0.0048
2396-01-2*0

Most Influential reactions involving [C6H5Br]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9795107.1 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 72570 ± 5 cm-1Kwon 2002
0.0485120.1 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.76 ± 0.02 (×2.768) eVRosenstock 1980, Baer 1982
0.0305120.2 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.81 ± 0.07 eVDunbar 1984
0.0205120.3 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.90 ± 0.05 (×1.719) eVLifshitz 1991, est unc
0.0145120.4 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.74 ± 0.10 eVDunbar 1985, Dunbar 1984, est unc
0.0095107.2 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.991 ± 0.002 (×3.221) eVHolland 2000
0.0015144.1 C6H5Br (g) [C6H5F]+ (g) → [C6H5Br]+ (g) C6H5F (g) ΔrH°(350 K) = -4.95 ± 0.5 kcal/molLias 1978, 2nd Law, est unc
0.0005107.7 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.98 ± 0.02 eVWatanabe 1962
0.0005107.3 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.998 ± 0.02 eVPotts 1980a, est unc, von Niessen 1982
0.0005107.4 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.98 ± 0.02 eVWalter 1991
0.0005107.8 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.98 ± 0.02 eVBralsford 1960
0.0005107.6 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.99 ± 0.02 eVKlasinc 1983, est unc
0.0005107.9 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.98 ± 0.02 eVWatanabe 1957
0.0005142.1 C6H5Br (g) [C6H5Cl]+ (g) → [C6H5Br]+ (g) C6H5Cl (g) ΔrG°(350 K) = -2.16 ± 0.5 kcal/molLias 1978, 3rd Law, est unc
0.0005142.2 C6H5Br (g) [C6H5Cl]+ (g) → [C6H5Br]+ (g) C6H5Cl (g) ΔrH°(350 K) = -2.14 ± 0.5 kcal/molLias 1978, 2nd Law, est unc
0.0005142.3 C6H5Br (g) [C6H5Cl]+ (g) → [C6H5Br]+ (g) C6H5Cl (g) ΔrH°(350 K) = -1.70 ± 0.5 kcal/molLias 1978, 2nd Law, est unc
0.0005107.5 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.97 ± 0.02 (×1.384) eVBaer 1976
0.0005107.10 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.99 ± 0.03 eVCvitas 1977
0.0005107.11 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 9.03 ± 0.04 eVSergeev 1970, note unc3
0.0005108.1 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.950 ± 0.05 eVMomigny 1968, est unc


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.