Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Fluorobenzene | C6H5F (g) | | -99.08 | -114.75 | ± 0.89 | kJ/mol | 96.1023 ± 0.0048 | 462-06-6*0 |
|
Representative Geometry of C6H5F (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of C6H5F (g)The 16 contributors listed below account for 91.5% of the provenance of ΔfH° of C6H5F (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5F (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Fluorobenzene cation | [C6H5F]+ (g) | | 788.90 | 773.88 | ± 0.89 | kJ/mol | 96.1018 ± 0.0048 | 34468-25-2*0 | 99.9 | Fluorobenzene | C6H5F (cr,l) | | -151.80 | -149.38 | ± 0.89 | kJ/mol | 96.1023 ± 0.0048 | 462-06-6*500 | 49.6 | Fluorobenzene anion | [C6H5F]- (g) | | -18.3 | -30.2 | ± 1.8 | kJ/mol | 96.1029 ± 0.0048 | 34561-55-2*0 | 14.5 | Benzene | C6H6 (g) | | 100.62 | 83.11 | ± 0.23 | kJ/mol | 78.1118 ± 0.0048 | 71-43-2*0 | 14.5 | Benzene cation | [C6H6]+ (g) | | 992.50 | 976.04 | ± 0.23 | kJ/mol | 78.1113 ± 0.0048 | 34504-50-2*0 | 14.5 | Benzene | C6H6 (cr,l) | | 50.71 | 49.17 | ± 0.23 | kJ/mol | 78.1118 ± 0.0048 | 71-43-2*500 | 10.2 | Hydrogen fluoride | HF (aq, 60 H2O) | | | -321.17 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*823 | 10.2 | Hydrogen fluoride | HF (aq, 55.51 H2O) | | | -321.16 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*891 | 10.2 | Hydrogen fluoride | HF (aq, 50 H2O) | | | -321.15 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*822 | 10.2 | Hydrogen fluoride | HF (aq, 55 H2O) | | | -321.16 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*905 |
|
Most Influential reactions involving C6H5F (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.275 | 5076.1 | C6H5F (g) → [C6H5F]+ (g)  | ΔrH°(0 K) = 74229 ± 5 cm-1 | Kwon 2002 | 0.275 | 5076.3 | C6H5F (g) → [C6H5F]+ (g)  | ΔrH°(0 K) = 74230 ± 5 cm-1 | Gonohe 1984 | 0.275 | 5076.2 | C6H5F (g) → [C6H5F]+ (g)  | ΔrH°(0 K) = 74229 ± 5 cm-1 | Lembach 1996 | 0.272 | 5081.4 | C6H5F (cr,l) → C6H5F (g)  | ΔrH°(298.15 K) = 34.63 ± 0.07 kJ/mol | Basarova 1991, Boublik 1984 | 0.244 | 5080.1 | [C6H5F]- (g) + C6H6 (g) → C6H5F (g) + [C6H6]- (g)  | ΔrH°(0 K) = 0.31 ± 0.03 eV | Frazier 1978, est unc | 0.190 | 5081.5 | C6H5F (cr,l) → C6H5F (g)  | ΔrH°(298.15 K) = 8.278 ± 0.02 kcal/mol | Scott 1956 | 0.164 | 5081.1 | C6H5F (cr,l) → C6H5F (g)  | ΔrH°(298.15 K) = 34.68 ± 0.09 kJ/mol | Majer 1985, Scott 1956 | 0.160 | 5079.1 | [C6H5F]- (g) → C6H5F (g)  | ΔrH°(0 K) = -0.82 ± 0.04 eV | Frazier 1978 | 0.154 | 5081.3 | C6H5F (cr,l) → C6H5F (g)  | ΔrH°(298.15 K) = 34.677 ± 0.093 kJ/mol | ThermoData 2004 | 0.137 | 5080.2 | [C6H5F]- (g) + C6H6 (g) → C6H5F (g) + [C6H6]- (g)  | ΔrH°(0 K) = 0.26 ± 0.04 eV | Jordan 1976, est unc | 0.108 | 5080.7 | [C6H5F]- (g) + C6H6 (g) → C6H5F (g) + [C6H6]- (g)  | ΔrH°(0 K) = 0.275 ± 0.045 eV | Ruscic W1RO | 0.102 | 5079.7 | [C6H5F]- (g) → C6H5F (g)  | ΔrH°(0 K) = -0.849 ± 0.050 eV | Ruscic W1RO | 0.090 | 5079.2 | [C6H5F]- (g) → C6H5F (g)  | ΔrH°(0 K) = -0.89 ± 0.05 (×1.067) eV | Jordan 1976 | 0.082 | 5076.4 | C6H5F (g) → [C6H5F]+ (g)  | ΔrH°(0 K) = 74238 ± 4 (×2.278) cm-1 | Shinohara 1997 | 0.072 | 5080.4 | [C6H5F]- (g) + C6H6 (g) → C6H5F (g) + [C6H6]- (g)  | ΔrH°(0 K) = 0.306 ± 0.055 eV | Ruscic G4 | 0.068 | 5076.5 | C6H5F (g) → [C6H5F]+ (g)  | ΔrH°(0 K) = 74222 ± 10 cm-1 | Grebner 1996, est unc | 0.063 | 5082.4 | C6H5F (cr,l) → C6H5F (g)  | ΔrG°(314.158 K) = 4.127 ± 0.145 kJ/mol | ThermoData 2004, 3rd Law | 0.061 | 5080.3 | [C6H5F]- (g) + C6H6 (g) → C6H5F (g) + [C6H6]- (g)  | ΔrH°(0 K) = 0.252 ± 0.060 eV | Ruscic G3X | 0.056 | 5084.8 | C6H5F (g) + CH4 (g) → C6H6 (g) + CH3F (g)  | ΔrH°(0 K) = 8.71 ± 0.9 kcal/mol | Ruscic W1RO | 0.054 | 5082.10 | C6H5F (cr,l) → C6H5F (g)  | ΔrG°(296.09 K) = 5.885 ± 0.157 kJ/mol | Young 1889, 3rd Law, ThermoData 2004 |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov |
4
|
|
L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017)
[DOI: 10.1021/acs.jctc.6b00970]
|
5
|
|
J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017)
[DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|