Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
HydroxyamidogenHNOH (g, trans)[NH]O101.694.7± 1.1kJ/mol32.02202 ±
0.00034
13940-32-4*1

Representative Geometry of HNOH (g, trans)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HNOH (g, trans)

The 20 contributors listed below account only for 82.8% of the provenance of ΔfH° of HNOH (g, trans).
A total of 31 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
15.81583.9 NH2O (g) → HNOH (g, trans) ΔrH°(0 K) = 7.52 ± 0.50 kcal/molDixon 2006, est unc
10.31570.7 HNOH (g, trans) → N (g) O (g) + 2 H (g) ΔrH°(0 K) = 249.96 ± 0.80 kcal/molDixon 2006
6.61589.1 HNOH (g, trans) → N (g) H2O (g) ΔrH°(0 K) = 31.0 ± 1.0 kcal/molKlippenstein 2009, est unc
6.61588.1 HNOH (g, trans) → H2 (g) NO (g) ΔrH°(0 K) = -2.0 ± 1.0 kcal/molKlippenstein 2009, est unc
6.51586.1 HNOH (g, trans) → HNO (g) H (g) ΔrH°(0 K) = 53.9 ± 1.0 kcal/molKlippenstein 2009, est unc
6.51587.1 HNOH (g, trans) → NH2 (g) O (g) ΔrH°(0 K) = 80.0 ± 1.0 kcal/molKlippenstein 2009, est unc
6.51585.1 HNOH (g, trans) → NH (g) OH (g) ΔrH°(0 K) = 70.1 ± 1.0 kcal/molKlippenstein 2009, est unc
3.91583.10 NH2O (g) → HNOH (g, trans) ΔrH°(0 K) = 7.0 ± 1.0 kcal/molKlippenstein 2009, est unc
2.71583.6 NH2O (g) → HNOH (g, trans) ΔrH°(0 K) = 2542 ± 420 cm-1Ruscic CBS-n
2.51570.6 HNOH (g, trans) → N (g) O (g) + 2 H (g) ΔrH°(0 K) = 250.52 ± 1.60 kcal/molRuscic CBS-n
2.21570.3 HNOH (g, trans) → N (g) O (g) + 2 H (g) ΔrH°(0 K) = 250.56 ± 1.72 kcal/molRuscic G3X
2.01583.3 NH2O (g) → HNOH (g, trans) ΔrH°(0 K) = 2443 ± 490 cm-1Ruscic G3X
1.51581.6 HNOH (g, trans) → HNOH (g, cis) ΔrH°(0 K) = 1812 ± 280 cm-1Ruscic CBS-n
1.51583.5 NH2O (g) → HNOH (g, trans) ΔrH°(0 K) = 2791 ± 560 cm-1Ruscic CBS-n
1.41570.5 HNOH (g, trans) → N (g) O (g) + 2 H (g) ΔrH°(0 K) = 251.04 ± 2.16 kcal/molRuscic CBS-n
1.21581.3 HNOH (g, trans) → HNOH (g, cis) ΔrH°(0 K) = 1886 ± 315 cm-1Ruscic G3X
1.21560.1 NH2O (g) → [NH2O]+ (g) ΔrH°(0 K) = 9.07 ± 0.01 eVBaker 1990
1.11591.1 NH2OH (g, trans) → [NH2O]+ (g) H (g) ΔrH°(0 K) = 12.39 ± 0.01 eVKutina 1982
1.01581.5 HNOH (g, trans) → HNOH (g, cis) ΔrH°(0 K) = 1850 ± 350 cm-1Ruscic CBS-n
0.91583.7 NH2O (g) → HNOH (g, trans) ΔrH°(0 K) = 6.5 ± 2.0 kcal/molSumathi 1998

Top 10 species with enthalpies of formation correlated to the ΔfH° of HNOH (g, trans)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 HydroxyamidogenHNOH (g)[NH]O101.694.7± 1.1kJ/mol32.02202 ±
0.00034
13940-32-4*0
39.0 HydroxyamidogenHNOH (g, cis)[NH]O123.5116.9± 1.7kJ/mol32.02202 ±
0.00034
13940-32-4*2
32.2 AminooxyNH2O (g)N[O]70.9364.33± 0.76kJ/mol32.02202 ±
0.00034
13408-29-2*0
18.6 Hydroxyamidogen anion[HNOH]- (g)[NH-]O90.884.9± 2.8kJ/mol32.02257 ±
0.00034
*66097-71-0*0
17.1 Aminooxy cation[NH2O]+ (g)N[O+]946.05938.92± 0.80kJ/mol32.02147 ±
0.00034
*51375-41-8*0
15.6 Hydroxyaminylium[HNOH]+ (g)[NH+]O1019.61012.4± 2.5kJ/mol32.02147 ±
0.00034
66097-71-0*0
15.6 Hydroxyaminylium[HNOH]+ (g, trans)[NH+]O1019.61012.4± 2.5kJ/mol32.02147 ±
0.00034
66097-71-0*1
14.2 Hydroxyaminylium[HNOH]+ (g, cis)[NH+]O1048.61041.4± 2.6kJ/mol32.02147 ±
0.00034
66097-71-0*2
7.5 Aminooxy anion[NH2O]- (g)N[O-]47.540.5± 1.7kJ/mol32.02257 ±
0.00034
51375-41-8*0
6.9 HydroxylamineNH2OH (g, trans)NO-33.23-43.61± 0.46kJ/mol33.02996 ±
0.00037
7803-49-8*1

Most Influential reactions involving HNOH (g, trans)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0001579.1 HNOH (g, trans) → HNOH (g) ΔrH°(0 K) = 0.0 ± 0.0 cm-1triv, Ruscic G3B3
0.2751583.9 NH2O (g) → HNOH (g, trans) ΔrH°(0 K) = 7.52 ± 0.50 kcal/molDixon 2006, est unc
0.2291581.6 HNOH (g, trans) → HNOH (g, cis) ΔrH°(0 K) = 1812 ± 280 cm-1Ruscic CBS-n
0.1811581.3 HNOH (g, trans) → HNOH (g, cis) ΔrH°(0 K) = 1886 ± 315 cm-1Ruscic G3X
0.1461581.5 HNOH (g, trans) → HNOH (g, cis) ΔrH°(0 K) = 1850 ± 350 cm-1Ruscic CBS-n
0.1241572.6 HNOH (g, trans) → [HNOH]+ (g, trans) ΔrH°(0 K) = 9.522 ± 0.075 eVRuscic CBS-n
0.1171574.3 [HNOH]- (g) → HNOH (g, trans) ΔrH°(0 K) = 0.112 ± 0.085 eVRuscic G3X
0.1041574.6 [HNOH]- (g) → HNOH (g, trans) ΔrH°(0 K) = 0.097 ± 0.090 eVRuscic CBS-n
0.1031570.7 HNOH (g, trans) → N (g) O (g) + 2 H (g) ΔrH°(0 K) = 249.96 ± 0.80 kcal/molDixon 2006
0.1001574.5 [HNOH]- (g) → HNOH (g, trans) ΔrH°(0 K) = 0.115 ± 0.092 eVRuscic CBS-n
0.0801572.3 HNOH (g, trans) → [HNOH]+ (g, trans) ΔrH°(0 K) = 9.522 ± 0.093 eVRuscic G3X
0.0711572.5 HNOH (g, trans) → [HNOH]+ (g, trans) ΔrH°(0 K) = 9.522 ± 0.099 eVRuscic CBS-n
0.0681583.10 NH2O (g) → HNOH (g, trans) ΔrH°(0 K) = 7.0 ± 1.0 kcal/molKlippenstein 2009, est unc
0.0671585.1 HNOH (g, trans) → NH (g) OH (g) ΔrH°(0 K) = 70.1 ± 1.0 kcal/molKlippenstein 2009, est unc
0.0661587.1 HNOH (g, trans) → NH2 (g) O (g) ΔrH°(0 K) = 80.0 ± 1.0 kcal/molKlippenstein 2009, est unc
0.0661586.1 HNOH (g, trans) → HNO (g) H (g) ΔrH°(0 K) = 53.9 ± 1.0 kcal/molKlippenstein 2009, est unc
0.0661588.1 HNOH (g, trans) → H2 (g) NO (g) ΔrH°(0 K) = -2.0 ± 1.0 kcal/molKlippenstein 2009, est unc
0.0661589.1 HNOH (g, trans) → N (g) H2O (g) ΔrH°(0 K) = 31.0 ± 1.0 kcal/molKlippenstein 2009, est unc
0.0471583.6 NH2O (g) → HNOH (g, trans) ΔrH°(0 K) = 2542 ± 420 cm-1Ruscic CBS-n
0.0351583.3 NH2O (g) → HNOH (g, trans) ΔrH°(0 K) = 2443 ± 490 cm-1Ruscic G3X


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.